reverses diabetes type 2

🔥+ reverses diabetes type 2 27 May 2020 What are the other common symptoms of type 2 diabetes? Some early signs that you may have prediabetes or diabetes, includes: Increased thirst, hunger and ...

reverses diabetes type 2 The causes of type 2 diabetes are less established than for type 1, but there are certain things that can put someone at higher risk: Being overweight; Being ...

blood type a diet for arthritis Skip to Main Content
Search
Close
Search
Article Navigation
Katie A Meyer
1From the Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis; the Department of Epidemiology, Harvard School of Public Health, Boston; and the Department of Food Science and Nutrition, University of Minnesota, St Paul.
Search for other works by this author on:
Katie A Meyer,
Lawrence H Kushi
1From the Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis; the Department of Epidemiology, Harvard School of Public Health, Boston; and the Department of Food Science and Nutrition, University of Minnesota, St Paul.
Search for other works by this author on:
Lawrence H Kushi,
David R Jacobs, Jr
1From the Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis; the Department of Epidemiology, Harvard School of Public Health, Boston; and the Department of Food Science and Nutrition, University of Minnesota, St Paul.
Search for other works by this author on:
David R Jacobs, Jr
1From the Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis; the Department of Epidemiology, Harvard School of Public Health, Boston; and the Department of Food Science and Nutrition, University of Minnesota, St Paul.
Search for other works by this author on:
David R Jacobs, Jr,
Joanne Slavin
1From the Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis; the Department of Epidemiology, Harvard School of Public Health, Boston; and the Department of Food Science and Nutrition, University of Minnesota, St Paul.
Search for other works by this author on:
Joanne Slavin,
Thomas A Sellers
1From the the 1 last update 27 May 2020 Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis; the Department of Epidemiology, Harvard School of Public Health, Boston; and the Department of Food Science and Nutrition, University of Minnesota, St Paul.
Search for other works by this author on:
Thomas A Sellers
1From the Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis; the Department of Epidemiology, Harvard School of Public Health, Boston; and the Department of Food Science and Nutrition, University of Minnesota, St Paul.
Search for other works by this author on:
Thomas A Sellers,
Aaron R Folsom
the 1 last update 27 May 2020 11From the Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis; the Department of Epidemiology, Harvard School of Public Health, Boston; and the Department of Food Science and Nutrition, University of Minnesota, St Paul.
3Address reprint requests to AR Folsom, Division of Epidemiology, School of Public Health, University of Minnesota, Suite 300, 1300 South Second Street, Minneapolis, MN 55454-1015. E-mail: [email protected].
Search for other works by the 1 last update 27 May 2020 this author on:
Aaron R Folsom the 1 last update 27 May 2020
Aaron R Folsom
the 1 last update 27 May 2020 11From the Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis; the Department of Epidemiology, Harvard School of Public Health, Boston; and the Department of Food Science and Nutrition, University of Minnesota, St Paul.
3Address reprint requests to AR Folsom, Division of Epidemiology, School of Public Health, University of Minnesota, Suite 300, 1300 South Second Street, Minneapolis, MN 55454-1015. E-mail: [email protected].
Search for other works by this author on:
Aaron R Folsom the 1 last update 27 May 2020
The American Journal of Clinical Nutrition, Volume 71, Issue 4, April 2000, Pages 921–930, https://doi.org/10.1093/ajcn/71.4.921
Published:
01 April 2000
Article history
Received:
08 December 1998
Accepted:
02 August 1999
Published:
01 April 2000
reverses diabetes type 2 undiagnosed (🔴 statistics) | reverses diabetes type 2 questionshow to reverses diabetes type 2 for Search
Close
Search

ABSTRACT

Background: Dietary carbohydrates may influence the development of type 2 (non-insulin-dependent) diabetes, for example, through effects on blood glucose and insulin concentrations.

Objective: We examined the relations of baseline intake of carbohydrates, dietary fiber, dietary magnesium, and carbohydrate-rich foods and the glycemic index with incidence of diabetes.

Design: This was a prospective cohort study of 35988 older Iowa women initially free of diabetes. During 6 y of follow-up, 1141 incident cases of diabetes were reported.

Results: Total grain, whole-grain, total dietary fiber, cereal fiber, and dietary magnesium intakes showed strong inverse associations with incidence of diabetes after adjustment for potential nondietary confounding variables. Multivariate-adjusted relative risks of diabetes were 1.0, 0.99, 0.98, 0.92, and 0.79 (P for trend: 0.0089) across quintiles of whole-grain intake; 1.0, 1.09, 1.00, 0.94, and 0.78 (P for trend: 0.005) across quintiles of total dietary fiber the 1 last update 27 May 2020 intake; and 1.0, 0.81, 0.82, 0.81, and 0.67 (P for trend: 0.0003) across quintiles of dietary magnesium intake. Intakes of total carbohydrates, refined grains, fruit and vegetables, and soluble fiber and the glycemic index were unrelated to diabetes risk.Results: Total grain, whole-grain, total dietary fiber, cereal fiber, and dietary magnesium intakes showed strong inverse associations with incidence of diabetes after adjustment for potential nondietary confounding variables. Multivariate-adjusted relative risks of diabetes were 1.0, 0.99, 0.98, 0.92, and 0.79 (P for trend: 0.0089) across quintiles of whole-grain intake; 1.0, 1.09, 1.00, 0.94, and 0.78 (P for trend: 0.005) across quintiles of total dietary fiber intake; and 1.0, 0.81, 0.82, 0.81, and 0.67 (P for trend: 0.0003) across quintiles of dietary magnesium intake. Intakes of total carbohydrates, refined grains, fruit and vegetables, and soluble fiber and the glycemic index were unrelated to diabetes risk.

Conclusion: These data support a protective role for grains (particularly whole grains), cereal fiber, and dietary magnesium in the development of diabetes in older women.

Type 2 diabetes, non-insulin-dependent diabetes mellitus, diet, nutrition, prospective studies, carbohydrates, dietary fiber, sugar, glycemic index, grains, magnesium, Iowa Women''s Health Study, a large cohort study of older women. Detailed dietary information collected at baseline enabled us to examine the long-term effects on diabetes incidence of several variables, including dietary carbohydrates, dietary fiber, the glycemic index and load, dietary magnesium, and carbohydrate-rich foods such as whole grains. These findings contribute to the long-standing discussion of the importance of carbohydrates and dietary fiber in the etiology of diabetes as well as to the relatively recent focus on glycemic index, the glycemic load, and whole-grain intake.

SUBJECTS AND METHODS

Subjects

The Iowa Women''s license were mailed a 16-page questionnaire and asked to participate in the study. The present study sample is composed of those 41836 women who returned the baseline questionnaire. Compared with nonresponders, responders had a mean body mass index (BMI; in kg/m2) that was smaller by ≈0.4, were 3 mo older, and were more likely to live in rural, less-affluent counties (20).

Women were excluded from these analyses if they reported implausibly high (> 20920 kJ) or low (<2510 kJ) energy intakes (n = 538), left ≥30 items blank on the food-frequency questionnaire (n = 2782), or had diabetes at baseline (n = 3121). Women were considered diabetic at baseline if they responded “yes” or “don''s spouse or a friend using a paper tape measure included with the questionnaire (21). A 3-level physical activity score was created by combining questions on the frequency of moderate and vigorous leisure-time activity. Pack-years of smoking (number of packs of cigarettes smoked daily times the number of years smoked) were calculated from information on the intensity and duration of cigarette smoking.

The principal dietary exposure of interest was intake of carbohydrates, including dietary fiber. This variable was examined by analyzing food sources of carbohydrates, subtypes of carbohydrates, components of carbohydrates, and the glycemic index and load. The food groups analyzed included grains, vegetables, fruit, and legumes. Total grain intake was subdivided into refined and whole grains as outlined previously (22). In addition to total dietary carbohydrates, starch, sucrose, glucose, fructose, maltose, and lactose were analyzed individually. Because the physiologic effects of fiber may relate to subtype (23), soluble and insoluble fiber were analyzed separately. Also, total dietary fiber was divided into mutually exclusive categories representing fiber contributed to the diet by cereals, fruit, vegetables, and legumes.

reverses diabetes type 2 warning signs (👍 events) | reverses diabetes type 2 ankle swellinghow to reverses diabetes type 2 for A 127-item food-frequency questionnaire similar to that used in the 1984 Nurses''s correlation coefficients for total carbohydrates and crude fiber were 0.45 and 0.24, respectively (25).

The glycemic index and glycemic load variables measure the glycemic response and insulin demand that result from specific carbohydrate-containing foods. The glycemic index and load values were available for most foods and were calculated as described by Salmerón et al (11, 12). The average dietary glycemic index for each individual was calculated as follows:  
\[{{\{}{\Sigma}[(Servings\ of\ food\ per\ day)\ {\times}\ (carbohydrate\ content\ of\ food)\ {\times}\ (glycemic\ index)]{\}}}/{total\ carbohydrate\ in\ diet}\]
Similarly, a glycemic load score was obtained for each individual as follows:  
\[{\Sigma}\ [(Servings\ of\ food\ per\ day)\ {\times}\ (carbohydrate\ content\ of\ food)\ {\times}\ (glycemic\ index)]\]

reverses diabetes type 2 statistics australia (🔥 natural supplements) | reverses diabetes type 2 questionnaire toolhow to reverses diabetes type 2 for Diabetes incidence was determined by an affirmative response to the following question on one of the follow-up surveys: Since (baseline or respective follow-up), were you diagnosed for the first time by a doctor as having sugar diabetes? Over 6 y of follow-up, 1141 women reported having diabetes in the 3 follow-up surveys administered in 1987 (n = 344), 1989 (n = 331), and 1992 (n = 466). Response rates for the 3 follow-up surveys were 91%, 86%, and 79%, respectively.

reverses diabetes type 2 variation (🔥 origin) | reverses diabetes type 2 termhow to reverses diabetes type 2 for A validation study of self-reported diabetes was conducted with 85 cohort participants in 1988 after the first follow-up survey (26). Subjects tended to overreport diabetes: of 44 women who reported diabetes at baseline, 28 (64%) were confirmed as being diabetic by their physician. All 41 women who reported not having diabetes at baseline were confirmed as not being diabetic.

Statistical analysis

Person-time of follow-up was calculated for each study participant as follows. For those women who did not report a diagnosis of diabetes, person-time was calculated from baseline to the date of the last completed questionnaire. For women who reported having been diagnosed with diabetes on one of the follow-up surveys, person-time was calculated as the sum of the known disease-free period and half of the period during which the diagnosis was first made. Mortality status was determined annually through linkage with the State Health Registry of Iowa. In addition, nonrespondents to the 3 follow-up surveys and emigrants from Iowa were linked with the National Death Index.

Dietary variables were categorized as appropriate for analysis. Relative risks calculated with proportional hazards regression are comparisons between the upper categories of intake and the lowest category. Trend analyses weighted each category of intake by the median intake for that category. Nutrient intakes were adjusted for total energy by the method described by Willett and Stampfer (27). Initial analyses were adjusted only for age and total energy. Further analyses were also adjusted for potential confounders of the observed diet-diabetes associations, including physical activity, BMI, WHR, smoking, alcohol intake, and education. Additional analyses excluded women who reported having cancer (n = 3202) or heart disease (n = 3110) at baseline (because these women may have recently modified their diets) and controlled for reported family history of diabetes in a first-degree relative (mother, father, brother, or sister), which was asked only in the third follow-up. The SAS package was used (28).Dietary variables were categorized as appropriate for analysis. Relative risks calculated with proportional hazards regression are comparisons between the upper categories of intake and the lowest category. Trend analyses weighted each category of intake by the median intake for that category. Nutrient intakes were adjusted for total energy by the method described by Willett and Stampfer (27). Initial analyses were adjusted only for age and total energy. Further analyses were also adjusted for potential confounders of the observed diet-diabetes associations, including physical activity, BMI, WHR, smoking, alcohol intake, and education. Additional analyses excluded women who reported having cancer (n = 3202) or heart disease (n = 3110) at baseline (because these women may have recently modified their diets) and controlled for reported family history of diabetes in a first-degree relative (mother, father, brother, or sister), which was asked only in the third follow-up. The SAS package was used (28).

RESULTS

Age-adjusted relative risks (RRs) of diabetes were 1.0, 0.67, and 0.55 (P for trend: 0.0001) for low, medium, and high physical activity, respectively. RRs were also notable for ever versus never drinking alcohol (RR: 0.62; 95% CI: 0.55, 0.70) and a family history of diabetes in a first-degree relative versus no family history (RR: 2.60; 95% CI: 2.31, 2.93). As shown previously, BMI and WHR strongly predicted diabetes in this cohort (26). Age-adjusted RRs were 1.0, 1.92, 3.38, 5.70, and 10.86 (P for trend: 0.0001) across quintiles of WHR and 1.0, 2.39, 2.98, 6.50, and 14.59 (P for trend: 0.0001) across quintiles of BMI.

The distribution of these risk factors across quintiles of whole-grain and energy-adjusted dietary fiber intake are shown in Table 1. Trends in most covariates across quintiles of dietary intakes were statistically significant. However, this was assuredly due to the large sample size, and the trends of only some covariates can be presumed to be clinically relevant. For example, women who reported higher intakes of whole grains and dietary fiber at baseline were appreciably more likely to have engaged in vigorous physical activity, have graduated from high school, have been nonsmokers, and have had low WHRs. In addition, the prevalence of abstinence from alcohol was 11% higher for women in the highest category of dietary fiber intake than for women in the lowest category of intake.

TABLE 1

Distribution of various baseline risk factors for diabetes mellitus across quintiles of whole-grain and energy-adjusted dietary fiber intake in 35988 Iowa women, 1986–19921

Quintile of intake
Variable1 the 1 last update 27 May 2020 .  . 2345P for trend2
Whole grains       
 Range of intake (servings/wk) <3.0 3.0–5.5 6.0–8.0 8.5–17.5 >17.5 — 
 Median intake (servings/wk) 10.5 20.5 — 
 Never drinker (%) 55.1 51.9 51.9 52.5 54.4 0.69 
 High school graduate (%) 76.7 81.8 83.2 85.4 84.1 <0.001 
 Vigorous activity (%) 18.6 23.6 24.9 29.7 28.5 <0.001 
 Current smoker (%) 22.7 16.8 14.6 10.1 12.7 <0.001 
 Family history of diabetes mellitus (%) 28.5 27.3 27.6 27.2 28.1 0.65 
 Age (y) 61.4 61.3 61.6 61.7 61.6 <0.0001 
 BMI (kg/m226.9 26.8 26.8 26.6 26.8 <0.0001 
 WHR 0.844 0.835 0.832 0.828 0.830 <0.0001 
 Total energy (kJ) 6879 6879 7297 7945 8577 <0.0001 
 Dietary fiber (g/d) 17.0 18.6 19.2 21.1 21.9 <0.0001 
Dietary fiber       
 Range of intake (g/d) ≤15.3 15.3–17.8 17.9–20.3 20.4–23.6 >23.6 — 
 Median intake (g/d) 13.27 16.64 19.03 21.82 26.50 — 
 Never drinker (%) 47.3 52.0 53.9 54.4 58.3 <0.001 
 High school graduate (%) 78.4 81.8 82.9 84.0 84.2 <0.001 
 Vigorous activity (%) 15.7 19.8 24.3 29.4 36.5 <0.001 
 Current smoker (%) 27.9 17.7 13.7 9.5 7.8 <0.001 
 Family history of diabetes mellitus (%) 28.5 26.9 27.3 28.1 27.9 0.96 
 Age (y) 60.9 61.2 61.6 61.8 62.0 <0.0001 
 BMI (kg/m226.8 27.0 26.9 26.7 26.4 <0.0001 
 WHR 0.846 0.838 0.832 0.827 0.825 <0.0001 
 Total energy (kJ) 8368 7075 7046 7226 8021 <0.0001 
 Whole grains (servings/wk) 6.2 7.8 8.9 10.7 13.7 <0.0001 
for 1 last update 27 May 2020 .  . Quintile of intake
Variablereverses diabetes type 2 obese (🔥 diet plan examples) | reverses diabetes type 2 long term effectshow to reverses diabetes type 2 for . 12 the 1 last update 27 May 2020 .  . 345P for trend2reverses diabetes type 2 keto diet (👍 occur) | reverses diabetes type 2 herbshow to reverses diabetes type 2 for . 
Whole grains       
 Range of intake (servings/wk) <3.0 3.0–5.5 6.0–8.0 8.5–17.5 >17.5 — 
 Median intake (servings/wk) 10.5 20.5 — 
 Never drinker (%) 55.1 51.9 51.9 52.5 54.4 0.69 
 High school graduate (%) 76.7 81.8 83.2 85.4 84.1 <0.001 
 Vigorous activity (%) 18.6 23.6 24.9 29.7 28.5 <0.001 
 Current smoker (%) 22.7 16.8 14.6 10.1 12.7 <0.001 
 Family history of diabetes mellitus (%) 28.5 27.3 27.6 27.2 28.1 0.65 
 Age (y) 61.4 61.3 61.6 61.7 61.6 <0.0001 
 BMI (kg/m226.9 26.8 26.8 26.6 26.8 <0.0001 
 WHR 0.844 0.835 0.832 0.828 0.830 <0.0001 
 Total energy (kJ) 6879 6879 7297 7945 8577 <0.0001 
 Dietary fiber (g/d) 17.0 18.6 19.2 21.1 21.9 <0.0001 
Dietary fiber       
 Range of intake (g/d) ≤15.3 15.3–17.8 17.9–20.3 20.4–23.6 >23.6 — 
 Median intake (g/d) 13.27 16.64 19.03 21.82 26.50 — 
 Never drinker (%) 47.3 52.0 53.9 54.4 58.3 <0.001 
 High school graduate (%) 78.4 81.8 82.9 84.0 84.2 <0.001 
 Vigorous activity (%) 15.7 19.8 24.3 29.4 36.5 <0.001 
 Current smoker (%) 27.9 17.7 13.7 9.5 7.8 <0.001 
 Family history of diabetes mellitus (%) 28.5 26.9 27.3 28.1 27.9 0.96 
 Age (y) 60.9 61.2 61.6 61.8 62.0 <0.0001 
 BMI (kg/m226.8 27.0 26.9 26.7 26.4 <0.0001 
 WHR 0.846 0.838 0.832 0.827 0.825 <0.0001 
 Total energy (kJ) 8368 7075 7046 7226 8021 <0.0001 
 Whole grains (servings/wk) 6.2 7.8 8.9 10.7 13.7 <0.0001 
1

Dietary fiber intake adjusted for total energy intake according to the method of Willett and Stampfer (27). WHR, waist-to-hip ratio.

2

For covariate proportions, chi-square tests for trends were calculated across quintiles of dietary intake. For covariate means, t tests were calculated from a linear regression of dietary intake on the covariate of interest; both dietary intakes and covariates were modeled as 5-level ordinal variables, with the covariate variable taking on the mean covariate value within each quintile of dietary intake.

TABLE 1

Distribution of various baseline risk factors for diabetes mellitus across quintiles of whole-grain and energy-adjusted dietary fiber intake in 35988 Iowa women, 1986–19921

Quintile of intake
Variablereverses diabetes type 2 oral medications (👍 killer) | reverses diabetes type 2 paperhow to reverses diabetes type 2 for the 1 last update 27 May 2020 .  . 12345P for trend2 the 1 last update 27 May 2020 .  . 
Whole grains       
 Range of intake (servings/wk) <3.0 3.0–5.5 6.0–8.0 8.5–17.5 >17.5 — 
 Median intake (servings/wk) 10.5 20.5 — 
 Never drinker (%) 55.1 51.9 51.9 52.5 54.4 0.69 
 High school graduate (%) 76.7 81.8 83.2 85.4 84.1 <0.001 
 Vigorous activity (%) 18.6 23.6 24.9 29.7 28.5 <0.001 
 Current smoker (%) 22.7 16.8 14.6 10.1 12.7 <0.001 
 Family history of diabetes mellitus (%) 28.5 27.3 27.6 27.2 28.1 0.65 
 Age (y) 61.4 61.3 61.6 61.7 61.6 <0.0001 
 BMI (kg/m226.9 26.8 26.8 26.6 26.8 <0.0001 
 WHR 0.844 0.835 0.832 0.828 0.830 <0.0001 
 Total energy (kJ) 6879 6879 7297 7945 8577 <0.0001 
 Dietary fiber (g/d) 17.0 18.6 19.2 21.1 21.9 <0.0001 
Dietary fiber       
 Range of intake (g/d) ≤15.3 15.3–17.8 17.9–20.3 20.4–23.6 >23.6 — 
 Median intake (g/d) 13.27 16.64 19.03 21.82 26.50 — 
 Never drinker (%) 47.3 52.0 53.9 54.4 58.3 <0.001 
 High school graduate (%) 78.4 81.8 82.9 84.0 84.2 <0.001 
 Vigorous activity (%) 15.7 19.8 24.3 29.4 36.5 <0.001 
 Current smoker (%) 27.9 17.7 13.7 9.5 7.8 <0.001 
 Family history of diabetes mellitus (%) 28.5 26.9 27.3 28.1 27.9 0.96 
 Age (y) 60.9 61.2 61.6 61.8 62.0 <0.0001 
 BMI (kg/m226.8 27.0 26.9 26.7 26.4 <0.0001 
 WHR 0.846 0.838 0.832 0.827 0.825 <0.0001 
 Total energy (kJ) 8368 7075 7046 7226 8021 <0.0001 
 Whole grains (servings/wk) 6.2 7.8 8.9 10.7 13.7 <0.0001 
Quintile of intake
Variable12345P for trend2
Whole grains       
 Range of intake (servings/wk) <3.0 3.0–5.5 6.0–8.0 8.5–17.5 >17.5 — 
 Median intake (servings/wk) 10.5 20.5 — 
 Never drinker (%) 55.1 51.9 51.9 52.5 54.4 0.69 
 High school graduate (%) 76.7 81.8 83.2 85.4 84.1 <0.001 
 Vigorous activity (%) 18.6 23.6 24.9 29.7 28.5 <0.001 
 Current smoker (%) 22.7 16.8 14.6 10.1 12.7 <0.001 
 Family history of diabetes mellitus (%) 28.5 27.3 27.6 27.2 28.1 0.65 
 Age (y) 61.4 61.3 61.6 61.7 61.6 <0.0001 
 BMI (kg/m226.9 26.8 26.8 26.6 26.8 <0.0001 
 WHR 0.844 0.835 0.832 0.828 0.830 <0.0001 
 Total energy (kJ) 6879 6879 7297 7945 8577 <0.0001 
 Dietary fiber (g/d) 17.0 18.6 19.2 21.1 21.9 <0.0001 
Dietary fiber       
 Range of intake (g/d) ≤15.3 15.3–17.8 17.9–20.3 20.4–23.6 >23.6 — 
 Median intake (g/d) 13.27 16.64 19.03 21.82 26.50 — 
 Never drinker (%) 47.3 52.0 53.9 54.4 58.3 <0.001 
 High school graduate (%) 78.4 81.8 82.9 84.0 84.2 <0.001 
 Vigorous activity (%) 15.7 19.8 24.3 29.4 36.5 <0.001 
 Current smoker (%) 27.9 17.7 13.7 9.5 7.8 <0.001 
 Family history of diabetes mellitus (%) 28.5 26.9 27.3 28.1 27.9 0.96 
 Age (y) 60.9 61.2 61.6 61.8 62.0 <0.0001 
 BMI (kg/m226.8 27.0 26.9 26.7 26.4 <0.0001 
 WHR 0.846 0.838 0.832 0.827 0.825 <0.0001 
 Total energy (kJ) 8368 7075 7046 7226 8021 <0.0001 
 Whole grains (servings/wk) 6.2 7.8 8.9 10.7 13.7 <0.0001 
reverses diabetes type 2 coronavirus risk (🔴 lifestyle changes) | reverses diabetes type 2 cause high blood pressurehow to reverses diabetes type 2 for 1

reverses diabetes type 2 natural supplements (🔴 eating) | reverses diabetes type 2 termhow to reverses diabetes type 2 for Dietary fiber intake adjusted for total energy intake according to the method of Willett and Stampfer (27). WHR, waist-to-hip ratio.

22

For covariate proportions, chi-square tests for trends were calculated across quintiles of dietary intake. For covariate means, t tests were calculated from a linear regression of dietary intake on the covariate of interest; both dietary intakes and covariates for 1 last update 27 May 2020 were modeled as 5-level ordinal variables, with the covariate variable taking on the mean covariate value within each quintile of dietary intake.For covariate proportions, chi-square tests for trends were calculated across quintiles of dietary intake. For covariate means, t tests were calculated from a linear regression of dietary intake on the covariate of interest; both dietary intakes and covariates were modeled as 5-level ordinal variables, with the covariate variable taking on the mean covariate value within each quintile of dietary intake.

The multivariate-adjusted analyses for intakes of total carbohydrate, starch, and sugars are shown in Table 2. After adjustment for potential confounding variables, total carbohydrates, starch, lactose, and maltose were unrelated to incidence of diabetes. RRs across total carbohydrate quintiles were 1.0, 1.05, 0.98, 0.90, 0.93 (P for trend: 0.22). Sucrose was inversely associated with incidence of diabetes. Women in the highest quintile of sucrose intake had an RR of 0.81 compared with women in the lowest quintile. Glucose and fructose intakes were positively associated with diabetes risk. The RRs comparing the highest quintile of intake with the lowest were 1.30 and 1.27 for glucose and fructose, respectively. Age- and energy-adjusted risk estimates were similar to the multivariate-adjusted findings, except that total carbohydrate intake showed a stronger inverse relation to type 2 diabetes in the age- and energy-adjusted model. The RR estimates in the age- and energy-adjusted model were 1.00, 1.06, 0.96, 0.84, and 0.86 (P for trend: 0.018) across quintiles of intake.

TABLE 2

Multivariate-adjusted relative risks of incident type 2 diabetes across quintiles of energy-adjusted carbohydrate intake among 35988 Iowa women, 1986–19921

Quintile of intake
Variable1234 for 1 last update 27 May 2020 .  . 5reverses diabetes type 2 natural dressings (🔥 injection) | reverses diabetes type 2 treatshow to reverses diabetes type 2 for for 1 last update 27 May 2020 .  . P for trend
Total carbohydrates       
 Range of intake (g/d) <192.1 192.1–210.6 210.7–225.6 225.7–243.8 >243.8 — 
 Median (g/d) 176 202 218 234 259 — 
 Cases (n239 255 227 206 214 — 
 Person-years 40123 40624 40397 40999 40512 — 
 Relative risk (95% CI) 1.00 1.05 (0.87, 1.26) 0.98 (0.81, 1.19) 0.90 (0.74, 1.09) 0.93 (0.76, 1.13) 0.22 
Starch       
 Range of intake (g/d) <50.5 50.5–59.3 59.4–67.0 67.1–76.8 >76.8 — 
 Median (g/d) 43.4 55.3 63.2 71.4 85.3 — 
 Cases (n254 204 234 220 229 — 
 Person-years 40162 40865 40822 40471 40334 — 
 Relative risk (95% CI) 1.00 0.79 (0.65, 0.96) 0.86 (0.71, 1.03) 0.82 (0.68, 1.00) 0.83 (0.69, 1.00) 0.12 
Glucose       
 Range of intake (g/d) <13.9 13.9–17.6 17.7–21.1 21.2–25.8 >25.8 — 
 Median (g/d) 11.1 15.9 19.3 23.2 30.0 — 
 Cases (n213 201 226 231 270 — 
 Person-years 39958 40798 41022 40627 40248 — 
 Relative risk (95% CI) 1.00 0.95 (0.78, 1.17) 1.11 (0.91, 1.35) 1.18 (0.97, 1.44) 1.30 (1.08, 1.57) 0.0007 
Sucrose       
 Range of intake (g/d) <31.2 31.2–38.0 38.1–43.6 43.7–51.0 >51.0 — 
 Median (g/d) 25.8 34.9 40.9 46.9 57.7 — 
 Cases (n245 236 230 220 210 — 
 Person-years 40082 40650 40824 40710 40387 — 
 Relative risk (95% CI) 1.00 0.98 (0.82, 1.19) 0.96 (0.79, 1.16) 0.93 (0.76, 1.13) 0.81 (0.67, 0.99) 0.027 
Fructose       
 Range of intake (g/d) <15.9 15.9–20.3 20.4–24.5 24.6–30.0 >30.0 — 
 Median (g/d) 12.5 18.3 22.4 26.9 35.5 — 
 Cases (n216 200 230 232 263 — 
 Person-years 39897 40929 40865 40641 40322 — 
 Relative risk (95% CI) 1.00 0.95 (0.77, 1.16) 1.17 (0.96, 1.42) 1.18 (0.97, 1.43) 1.27 (1.06, 1.54) 0.0015 
Lactose       
 Range of intake (g/d) <11.9 11.9–16.7 16.8–29.5 29.6–101.8 >101.8 — 
 Median (g/d) 4.7 9.7 14.3 19.7 33.8 — 
 Cases (n230 246 221 232 212 — 
 Person-years 40209 40431 40741 40295 40978 — 
 Relative risk (95% CI) 1.00 1.16 (0.96, 1.41) 1.02 (0.84, 1.24) 1.09 (0.90, 1.32) 0.94 (0.77, 1.14) 0.24 
Maltose       
 Range of intake (g/d) <0.92 0.92–1.19 1.20–1.45 1.46–1.85 >1.85 — 
 Median (g/d) 0.71 1.06 1.32 1.63 2.28 — 
 Cases (n239 201 250 234 217 — 
 Person-years 40452 40675 40638 40727 40161 — 
 Relative risk (95% CI) 1.00 0.86 (0.71, 1.05) 1.11 (0.92, 1.34) 1.07 (0.88, 1.30) 0.98 (0.81, 1.19) 0.60 
Quintile of intakereverses diabetes type 2 wounds (🔴 guidelines 2020) | reverses diabetes type 2 bornhow to reverses diabetes type 2 for . 
Variable the 1 last update 27 May 2020 .  . 12345reverses diabetes type 2 blood sugar chart (👍 nature journal) | reverses diabetes type 2 hyperglycemiahow to reverses diabetes type 2 for . P for trend
Total carbohydrates       
 Range of intake (g/d) <192.1 192.1–210.6 210.7–225.6 225.7–243.8 >243.8 — 
 Median (g/d) 176 202 218 234 259 — 
 Cases (n239 255 227 206 214 — 
 Person-years 40123 40624 40397 40999 40512 — 
 Relative risk (95% CI) 1.00 1.05 (0.87, 1.26) 0.98 (0.81, 1.19) 0.90 (0.74, 1.09) 0.93 (0.76, 1.13) 0.22 
Starch       
 Range of intake (g/d) <50.5 50.5–59.3 59.4–67.0 67.1–76.8 >76.8 — 
 Median (g/d) 43.4 55.3 63.2 71.4 85.3 — 
 Cases (n254 204 234 220 229 — 
 Person-years 40162 40865 40822 40471 40334 — 
 Relative risk (95% CI) 1.00 0.79 (0.65, 0.96) 0.86 (0.71, 1.03) 0.82 (0.68, 1.00) 0.83 (0.69, 1.00) 0.12 
Glucose       
 Range of intake (g/d) <13.9 13.9–17.6 17.7–21.1 21.2–25.8 >25.8 — 
 Median (g/d) 11.1 15.9 19.3 23.2 30.0 — 
 Cases (n213 201 226 231 270 — 
 Person-years 39958 40798 41022 40627 40248 — 
 Relative risk (95% CI) 1.00 0.95 (0.78, 1.17) 1.11 (0.91, 1.35) 1.18 (0.97, 1.44) 1.30 (1.08, 1.57) 0.0007 
Sucrose       
 Range of intake (g/d) <31.2 31.2–38.0 38.1–43.6 43.7–51.0 >51.0 — 
 Median (g/d) 25.8 34.9 40.9 46.9 57.7 — 
 Cases (n245 236 230 220 210 — 
 Person-years 40082 40650 40824 40710 40387 — 
 Relative risk (95% CI) 1.00 0.98 (0.82, 1.19) 0.96 (0.79, 1.16) 0.93 (0.76, 1.13) 0.81 (0.67, 0.99) 0.027 
Fructose       
 Range of intake (g/d) <15.9 15.9–20.3 20.4–24.5 24.6–30.0 >30.0 — 
 Median (g/d) 12.5 18.3 22.4 26.9 35.5 — 
 Cases (n216 200 230 232 263 — 
 Person-years 39897 40929 40865 40641 40322 — 
 Relative risk (95% CI) 1.00 0.95 (0.77, 1.16) 1.17 (0.96, 1.42) 1.18 (0.97, 1.43) 1.27 (1.06, 1.54) 0.0015 
Lactose       
 Range of intake (g/d) <11.9 11.9–16.7 16.8–29.5 29.6–101.8 >101.8 — 
 Median (g/d) 4.7 9.7 14.3 19.7 33.8 — 
 Cases (n230 246 221 232 212 — 
 Person-years 40209 40431 40741 40295 40978 — 
 Relative risk (95% CI) 1.00 1.16 (0.96, 1.41) 1.02 (0.84, 1.24) 1.09 (0.90, 1.32) 0.94 (0.77, 1.14) 0.24 
Maltose       
 Range of intake (g/d) <0.92 0.92–1.19 1.20–1.45 1.46–1.85 >1.85 — 
 Median (g/d) 0.71 1.06 1.32 1.63 2.28 — 
 Cases (n239 201 250 234 217 — 
 Person-years 40452 40675 40638 40727 40161 — 
 Relative risk (95% CI) 1.00 0.86 (0.71, 1.05) 1.11 (0.92, 1.34) 1.07 (0.88, 1.30) 0.98 (0.81, 1.19) 0.60 
1

Proportional hazards regression models were adjusted for the following: age, total energy intake, BMI (quintiles), waist-to-hip ratio (quintiles), education (no high school diploma, high school diploma, some college or vocational school, or college degree), pack-years of smoking (none, 1–19, 20–39, or ≥ 40), alcohol intake (none, <4 g/d, 4–9.9 g/d, or ≥10 g/d), and physical activity (low, medium, or high). Person-years were calculated as described in Methods.

TABLE 2

Multivariate-adjusted relative risks of incident type 2 diabetes across quintiles of energy-adjusted carbohydrate intake among 35988 Iowa women, 1986–19921

Quintile of intake
Variable12345P for trend
Total carbohydrates       
 Range of intake (g/d) <192.1 192.1–210.6 210.7–225.6 225.7–243.8 >243.8 — 
 Median (g/d) 176 202 218 234 259 — 
 Cases (n239 255 227 206 214 — 
 Person-years 40123 40624 40397 40999 40512 — 
 Relative risk (95% CI) 1.00 1.05 (0.87, 1.26) 0.98 (0.81, 1.19) 0.90 (0.74, 1.09) 0.93 (0.76, 1.13) 0.22 
Starch       
 Range of intake (g/d) <50.5 50.5–59.3 59.4–67.0 67.1–76.8 >76.8 — 
 Median (g/d) 43.4 55.3 63.2 71.4 85.3 — 
 Cases (n254 204 234 220 229 — 
 Person-years 40162 40865 40822 40471 40334 — 
 Relative risk (95% CI) 1.00 0.79 (0.65, 0.96) 0.86 (0.71, 1.03) 0.82 (0.68, 1.00) 0.83 (0.69, 1.00) 0.12 
Glucose       
 Range of intake (g/d) <13.9 13.9–17.6 17.7–21.1 21.2–25.8 >25.8 — 
 Median (g/d) 11.1 15.9 19.3 23.2 30.0 — 
 Cases (n213 201 226 231 270 — 
 Person-years 39958 40798 41022 40627 40248 — 
 Relative risk (95% CI) 1.00 0.95 (0.78, 1.17) 1.11 (0.91, 1.35) 1.18 (0.97, 1.44) 1.30 (1.08, 1.57) 0.0007 
Sucrose       
 Range of intake (g/d) <31.2 31.2–38.0 38.1–43.6 43.7–51.0 >51.0 — 
 Median (g/d) 25.8 34.9 40.9 46.9 57.7 — 
 Cases (n245 236 230 220 210 — 
 Person-years 40082 40650 40824 40710 40387 — 
 Relative risk (95% CI) 1.00 0.98 (0.82, 1.19) 0.96 (0.79, 1.16) 0.93 (0.76, 1.13) 0.81 (0.67, 0.99) 0.027 
Fructose       
 Range of intake (g/d) <15.9 15.9–20.3 20.4–24.5 24.6–30.0 >30.0 — 
 Median (g/d) 12.5 18.3 22.4 26.9 35.5 — 
 Cases (n216 200 230 232 263 — 
 Person-years 39897 40929 40865 40641 40322 — 
 Relative risk (95% CI) 1.00 0.95 (0.77, 1.16) 1.17 (0.96, 1.42) 1.18 (0.97, 1.43) 1.27 (1.06, 1.54) 0.0015 
Lactose       
 Range of intake (g/d) <11.9 11.9–16.7 16.8–29.5 29.6–101.8 >101.8 — 
 Median (g/d) 4.7 9.7 14.3 19.7 33.8 — 
 Cases (n230 246 221 232 212 — 
 Person-years 40209 40431 40741 40295 40978 — 
 Relative risk (95% CI) 1.00 1.16 (0.96, 1.41) 1.02 (0.84, 1.24) 1.09 (0.90, 1.32) 0.94 (0.77, 1.14) 0.24 
Maltose       
 Range of intake (g/d) <0.92 0.92–1.19 1.20–1.45 1.46–1.85 >1.85 — 
 Median (g/d) 0.71 1.06 1.32 1.63 2.28 — 
 Cases (n239 201 250 234 217 — 
 Person-years 40452 40675 40638 40727 40161 — 
 Relative risk (95% CI) 1.00 0.86 (0.71, 1.05) 1.11 (0.92, 1.34) 1.07 (0.88, 1.30) 0.98 (0.81, 1.19) 0.60 
reverses diabetes type 2 exhaustion (☑ mellitus nature) | reverses diabetes type 2 pregnancyhow to reverses diabetes type 2 for the 1 last update 27 May 2020 .  . Quintile of intake
Variable12345 for 1 last update 27 May 2020 .  . P for trend
Total carbohydrates       
 Range of intake (g/d) <192.1 192.1–210.6 210.7–225.6 225.7–243.8 >243.8 — 
 Median (g/d) 176 202 218 234 259 — 
 Cases (n239 255 227 206 214 — 
 Person-years 40123 40624 40397 40999 40512 — 
 Relative risk (95% CI) 1.00 1.05 (0.87, 1.26) 0.98 (0.81, 1.19) 0.90 (0.74, 1.09) 0.93 (0.76, 1.13) 0.22 
Starch       
 Range of intake (g/d) <50.5 50.5–59.3 59.4–67.0 67.1–76.8 >76.8 — 
 Median (g/d) 43.4 55.3 63.2 71.4 85.3 — 
 Cases (n254 204 234 220 229 — 
 Person-years 40162 40865 40822 40471 40334 — 
 Relative risk (95% CI) 1.00 0.79 (0.65, 0.96) 0.86 (0.71, 1.03) 0.82 (0.68, 1.00) 0.83 (0.69, 1.00) 0.12 
Glucose       
 Range of intake (g/d) <13.9 13.9–17.6 17.7–21.1 21.2–25.8 >25.8 — 
 Median (g/d) 11.1 15.9 19.3 23.2 30.0 — 
 Cases (n213 201 226 231 270 — 
 Person-years 39958 40798 41022 40627 40248 — 
 Relative risk (95% CI) 1.00 0.95 (0.78, 1.17) 1.11 (0.91, 1.35) 1.18 (0.97, 1.44) 1.30 (1.08, 1.57) 0.0007 
Sucrose       
 Range of intake (g/d) <31.2 31.2–38.0 38.1–43.6 43.7–51.0 >51.0 — 
 Median (g/d) 25.8 34.9 40.9 46.9 57.7 — 
 Cases (n245 236 230 220 210 — 
 Person-years 40082 40650 40824 40710 40387 — 
 Relative risk (95% CI) 1.00 0.98 (0.82, 1.19) 0.96 (0.79, 1.16) 0.93 (0.76, 1.13) 0.81 (0.67, 0.99) 0.027 
Fructose       
 Range of intake (g/d) <15.9 15.9–20.3 20.4–24.5 24.6–30.0 >30.0 — 
 Median (g/d) 12.5 18.3 22.4 26.9 35.5 — 
 Cases (n216 200 230 232 263 — 
 Person-years 39897 40929 40865 40641 40322 — 
 Relative risk (95% CI) 1.00 0.95 (0.77, 1.16) 1.17 (0.96, 1.42) 1.18 (0.97, 1.43) 1.27 (1.06, 1.54) 0.0015 
Lactose       
 Range of intake (g/d) <11.9 11.9–16.7 16.8–29.5 29.6–101.8 >101.8 — 
 Median (g/d) 4.7 9.7 14.3 19.7 33.8 — 
 Cases (n230 246 221 232 212 — 
 Person-years 40209 40431 40741 40295 40978 — 
 Relative risk (95% CI) 1.00 1.16 (0.96, 1.41) 1.02 (0.84, 1.24) 1.09 (0.90, 1.32) 0.94 (0.77, 1.14) 0.24 
Maltose       
 Range of intake (g/d) <0.92 0.92–1.19 1.20–1.45 1.46–1.85 >1.85 — 
 Median (g/d) 0.71 1.06 1.32 1.63 2.28 — 
 Cases (n239 201 250 234 217 — 
 Person-years 40452 40675 40638 40727 40161 — 
 Relative risk (95% CI) 1.00 0.86 (0.71, 1.05) 1.11 (0.92, 1.34) 1.07 (0.88, 1.30) 0.98 (0.81, 1.19) 0.60 
reverses diabetes type 2 events (🔴 low blood sugar) | reverses diabetes type 2 in skinny peoplehow to reverses diabetes type 2 for 1

reverses diabetes type 2 etiology (👍 fasting) | reverses diabetes type 2 recommendationshow to reverses diabetes type 2 for Proportional hazards regression models were adjusted for the following: age, total energy intake, BMI (quintiles), waist-to-hip ratio (quintiles), education (no high school diploma, high school diploma, some college or vocational school, or college degree), pack-years of smoking (none, 1–19, 20–39, or ≥ 40), alcohol intake (none, <4 g/d, 4–9.9 g/d, or ≥10 g/d), and physical activity (low, medium, or high). Person-years were calculated as described in Methods.

reverses diabetes type 2 with fasting (👍 hyperglycemia) | reverses diabetes type 2 can drink alcoholhow to reverses diabetes type 2 for The glycemic index and glycemic load were not associated with diabetes in these data (Table 3). The pattern of risk across quintiles of glycemic index was inconsistent; RRs first rose to 1.22 in quintile 3 and then dropped to 0.84 in quintile 5. Glycemic load was nonsignificantly inversely for 1 last update 27 May 2020 related to diabetes. These findings did not appear to have been due to confounding or effect modification by dietary fiber intake. Relative risk estimates were similar in age- and energy-adjusted analyses.The glycemic index and glycemic load were not associated with diabetes in these data (Table 3). The pattern of risk across quintiles of glycemic index was inconsistent; RRs first rose to 1.22 in quintile 3 and then dropped to 0.84 in quintile 5. Glycemic load was nonsignificantly inversely related to diabetes. These findings did not appear to have been due to confounding or effect modification by dietary fiber intake. Relative risk estimates were similar in age- and energy-adjusted analyses.

TABLE 3

Multivariate-adjusted relative risks of incident type 2 diabetes across categories of glycemic index and glycemic load among 35988 Iowa women, 1986–19921

Category of intake
Variable12345reverses diabetes type 2 questions and answers (🔴 and hypothyroidism) | reverses diabetes type 2 treatment without medicationhow to reverses diabetes type 2 for . P for trend
Glycemic index       
 Range <58 59–65 66–71 72–80 >80.0 — 
 Median 53 62 69 75 89 — 
 Cases (n230 257 260 200 194 — 
 Person-years 39960 40663 40405 40822 40804  
 Relative risk2 (95% CI) 1.00 1.17 (0.97, 1.40) 1.22 (1.02, 1.47) 0.91 (0.75, 1.11) 0.84 (0.69, 1.03) 0.0079 
 Relative risk3 (95% CI) 1.00 1.19 (0.98, 1.43) 1.26 (1.05, 1.53) 0.96 (0.78, 1.17) 0.89 (0.72, 1.10) 0.0507 
 Relative risk4       
  Lowest tertile of fiber (95% CI) 1.00 1.06 (0.84, 1.34) 0.95 (0.74, 1.22) — — — 
  Middle tertile of fiber (95% CI) 1.07 (0.86, 1.34) 1.11 (0.90, 1.37) 0.84 (0.66, 1.08) — — — 
  Highest tertile of fiber (95% CI) 0.92 (0.69, 1.24) 0.97 (0.77, 1.22) 0.71 (0.56, 0.89) — — — 
Glycemic load       
 Range <103 104–114 115–124 125–136 >136 — 
 Median 94 110 120 129 145 — 
 Cases (n247 236 220 214 224 — 
 Person-years 40160 40740 40574 40629 40550 — 
 Relative risk2 (95% CI) 1.00 0.95 (0.79, 1.15) 0.85 (0.70, 1.03) 0.88 (0.73, 1.07) 0.89 (0.73, 1.08) 0.17 
 Relative risk3 (95% CI) 1.00 0.96 (0.79, 1.15) 0.86 (0.71, 1.05) 0.92 (0.75, 1.12) 0.95 (0.78, 1.16) 0.53 
 Relative risk4       
  Lowest tertile of fiber (95% CI) 1.00 0.96 (0.76, 1.21) 0.97 (0.75, 1.26) — — — 
  Middle tertile of fiber (95% CI) 1.09 (0.87, 1.37) 0.98 (0.79, 1.22) 0.91 (0.72, 1.15) — — — 
  Highest tertile of fiber (95% CI) 0.81 (0.60, 1.10) 0.77 (0.60, 0.99) 0.85 (0.69, 1.05) — — — 
Category of intake for 1 last update 27 May 2020 .  . 
Variable12345P for trend
Glycemic index       
 Range <58 59–65 66–71 72–80 >80.0 — 
 Median 53 62 69 75 89 — 
 Cases (n230 257 260 200 194 — 
 Person-years 39960 40663 40405 40822 40804  
 Relative risk2 (95% CI) 1.00 1.17 (0.97, 1.40) 1.22 (1.02, 1.47) 0.91 (0.75, 1.11) 0.84 (0.69, 1.03) 0.0079 
 Relative risk3 (95% CI) 1.00 1.19 (0.98, 1.43) 1.26 (1.05, 1.53) 0.96 (0.78, 1.17) 0.89 (0.72, 1.10) 0.0507 
 Relative risk4       
  Lowest tertile of fiber (95% CI) 1.00 1.06 (0.84, 1.34) 0.95 (0.74, 1.22) — — — 
  Middle tertile of fiber (95% CI) 1.07 (0.86, 1.34) 1.11 (0.90, 1.37) 0.84 (0.66, 1.08) — — — 
  Highest tertile of fiber (95% CI) 0.92 (0.69, 1.24) 0.97 (0.77, 1.22) 0.71 (0.56, 0.89) — — — 
Glycemic load       
 Range <103 104–114 115–124 125–136 >136 — 
 Median 94 110 120 129 145 — 
 Cases (n247 236 220 214 224 — 
 Person-years 40160 40740 40574 40629 40550 — 
 Relative risk2 (95% CI) 1.00 0.95 (0.79, 1.15) 0.85 (0.70, 1.03) 0.88 (0.73, 1.07) 0.89 (0.73, 1.08) 0.17 
 Relative risk3 (95% CI) 1.00 0.96 (0.79, 1.15) 0.86 (0.71, 1.05) 0.92 (0.75, 1.12) 0.95 (0.78, 1.16) 0.53 
 Relative risk4       
  Lowest tertile of fiber (95% CI) 1.00 0.96 (0.76, 1.21) 0.97 (0.75, 1.26) — — — 
  Middle tertile of fiber (95% CI) 1.09 (0.87, 1.37) 0.98 (0.79, 1.22) 0.91 (0.72, 1.15) — — — 
  Highest tertile of fiber (95% CI) 0.81 (0.60, 1.10) 0.77 (0.60, 0.99) 0.85 (0.69, 1.05) — — — 
1

Person-years were calculated as described in Methods.

22

Proportional hazards regression models were adjusted for the same covariates listed in Table 2.

3

Additional adjustment for total dietary fiber.

4

reverses diabetes type 2 natural cures treatments (☑ oral) | reverses diabetes type 2 glucosehow to reverses diabetes type 2 for Models were adjusted for the same covariates listed in Table 2. Relative risks are across tertiles of glycemic index or glycemic load within tertiles of total dietary fiber intake.

TABLE 3

Multivariate-adjusted relative risks of incident type 2 diabetes across categories of glycemic index and glycemic load among 35988 Iowa women, 1986–19921

Category of intake the 1 last update 27 May 2020 .  . 
Variable12345 for 1 last update 27 May 2020 .  . P for trend
Glycemic index       
 Range <58 59–65 66–71 72–80 >80.0 — 
 Median 53 62 69 75 89 — 
 Cases (n230 257 260 200 194 — 
 Person-years 39960 40663 40405 40822 40804  
 Relative risk2 (95% CI) 1.00 1.17 (0.97, 1.40) 1.22 (1.02, 1.47) 0.91 (0.75, 1.11) 0.84 (0.69, 1.03) 0.0079 
 Relative risk3 (95% CI) 1.00 1.19 (0.98, 1.43) 1.26 (1.05, 1.53) 0.96 (0.78, 1.17) 0.89 (0.72, 1.10) 0.0507 
 Relative risk4       
  Lowest tertile of fiber (95% CI) 1.00 1.06 (0.84, 1.34) 0.95 (0.74, 1.22) — — — 
  Middle tertile of fiber (95% CI) 1.07 (0.86, 1.34) 1.11 (0.90, 1.37) 0.84 (0.66, 1.08) — — — 
  Highest tertile of fiber (95% CI) 0.92 (0.69, 1.24) 0.97 (0.77, 1.22) 0.71 (0.56, 0.89) — — — 
Glycemic load       
 Range <103 104–114 115–124 125–136 >136 — 
 Median 94 110 120 129 145 — 
 Cases (n247 236 220 214 224 — 
 Person-years 40160 40740 40574 40629 40550 — 
 Relative risk2 (95% CI) 1.00 0.95 (0.79, 1.15) 0.85 (0.70, 1.03) 0.88 (0.73, 1.07) 0.89 (0.73, 1.08) 0.17 
 Relative risk3 (95% CI) 1.00 0.96 (0.79, 1.15) 0.86 (0.71, 1.05) 0.92 (0.75, 1.12) 0.95 (0.78, 1.16) 0.53 
 Relative risk4       
  Lowest tertile of fiber (95% CI) 1.00 0.96 (0.76, 1.21) 0.97 (0.75, 1.26) — — — 
  Middle tertile of fiber (95% CI) 1.09 (0.87, 1.37) 0.98 (0.79, 1.22) 0.91 (0.72, 1.15) — — — 
  Highest tertile of fiber (95% CI) 0.81 (0.60, 1.10) 0.77 (0.60, 0.99) 0.85 (0.69, 1.05) — — — 
Category of intake
Variable1 the 1 last update 27 May 2020 .  . 2345P for trendreverses diabetes type 2 young adults early death (🔴 symptoms mayo clinic) | reverses diabetes type 2 statistics ukhow to reverses diabetes type 2 for . 
Glycemic index       
 Range <58 59–65 66–71 72–80 >80.0 — 
 Median 53 62 69 75 89 — 
 Cases (n230 257 260 200 194 — 
 Person-years 39960 40663 40405 40822 40804  
 Relative risk2 (95% CI) 1.00 1.17 (0.97, 1.40) 1.22 (1.02, 1.47) 0.91 (0.75, 1.11) 0.84 (0.69, 1.03) 0.0079 
 Relative risk3 (95% CI) 1.00 1.19 (0.98, 1.43) 1.26 (1.05, 1.53) 0.96 (0.78, 1.17) 0.89 (0.72, 1.10) 0.0507 
 Relative risk4       
  Lowest tertile of fiber (95% CI) 1.00 1.06 (0.84, 1.34) 0.95 (0.74, 1.22) — — — 
  Middle tertile of fiber (95% CI) 1.07 (0.86, 1.34) 1.11 (0.90, 1.37) 0.84 (0.66, 1.08) — — — 
  Highest tertile of fiber (95% CI) 0.92 (0.69, 1.24) 0.97 (0.77, 1.22) 0.71 (0.56, 0.89) — — — 
Glycemic load       
 Range <103 104–114 115–124 125–136 >136 — 
 Median 94 110 120 129 145 — 
 Cases (n247 236 220 214 224 — 
 Person-years 40160 40740 40574 40629 40550 — 
 Relative risk2 (95% CI) 1.00 0.95 (0.79, 1.15) 0.85 (0.70, 1.03) 0.88 (0.73, 1.07) 0.89 (0.73, 1.08) 0.17 
 Relative risk3 (95% CI) 1.00 0.96 (0.79, 1.15) 0.86 (0.71, 1.05) 0.92 (0.75, 1.12) 0.95 (0.78, 1.16) 0.53 
 Relative risk4       
  Lowest tertile of fiber (95% CI) 1.00 0.96 (0.76, 1.21) 0.97 (0.75, 1.26) — — — 
  Middle tertile of fiber (95% CI) 1.09 (0.87, 1.37) 0.98 (0.79, 1.22) 0.91 (0.72, 1.15) — — — 
  Highest tertile of fiber (95% CI) 0.81 (0.60, 1.10) 0.77 (0.60, 0.99) 0.85 (0.69, 1.05) — — — 
1

Person-years were calculated as described in Methods.

2

Proportional hazards regression models were adjusted for the same covariates listed in Table 2.

reverses diabetes type 2 for dummies (☑ treats) | reverses diabetes type 2 womenhow to reverses diabetes type 2 for 3

Additional adjustment for total dietary fiber.

4

Models were adjusted for the same covariates listed in Table 2. Relative risks are across tertiles of glycemic index or glycemic load within tertiles of total dietary fiber intake.

The multivariate-adjusted RRs of diabetes across quintiles of total dietary fiber, insoluble fiber, and soluble fiber intake and fiber obtained from cereal, fruit, vegetable, and legume sources are shown in Table 4. In the multivariate analysis, total dietary fiber was inversely associated with diabetes risk (RR = 0.78 comparing the fifth with the first quintile of intake; P for trend: 0.005). Intake of insoluble fiber was inversely associated with diabetes risk, whereas intake of soluble fiber did not appear to be strongly related to diabetes risk. Women in the highest quintile of intake had RRs of 0.89 and 0.75 for soluble and insoluble fiber, respectively, compared with women in the first quintile of intake. Fiber derived from cereals was also inversely associated with diabetes (RR = 0.64 for the highest versus the lowest quintile). Fiber derived from fruit, vegetables, or legumes was unrelated to diabetes risk. Also shown in Table 4 are the multivariate-adjusted RRs of diabetes across quintiles of intake of dietary magnesium, which is found in the fibrous component of cereal plants. There was an inverse relation between dietary magnesium and type 2 diabetes.

TABLE 4

Multivariate-adjusted relative risks of incident type 2 diabetes across quintiles of energy-adjusted dietary fiber and magnesium intakes among 35988 Iowa women, 1986–19921

Quintile of intake
Variable123 for 1 last update 27 May 2020 .  . 45P for trend
Total dietary fiber       
 Range (g/d) <15.3 15.3–17.8 17.9–20.3 20.4–23.6 >23.6 — 
 Median (g/d) 13.27 16.64 19.03 21.82 26.50 — 
 Cases (n253 265 234 212 177 — 
 Person-years 39587 40016 40534 41396 41120 — 
 Relative risk (95% CI) 1.00 1.09 (0.91, 1.31) 1.00 (0.83, 1.21) 0.94 (0.78, 1.15) 0.78 (0.64, 0.96) 0.005 
Total soluble fiber       
 Range (g/d) <4.8 4.8–5.5 5.6–6.2 6.3–7.2 >7.2 — 
 Median (g/d) 4.19 5.19 5.88 6.64 8.01 — 
 Cases (n250 231 237 221 202 — 
 Person-years 39576 40572 40637 40988 40880 — 
 Relative risk (95% CI) 1.00 1.00 (0.83, 1.21) 1.02 (0.84, 1.23) 0.99 (0.82, 1.20) 0.89 (0.73, 1.08) 0.23 
Total insoluble fiber       
 Range (g/d) <11.4 11.4–13.4 13.5–15.2 15.3–17.7 >17.7 — 
 Median (g/d) 9.93 12.48 14.31 16.34 19.84 — 
 Cases (n268 255 232 204 182 — 
 Person-years 39737 40159 40680 41080 40996 — 
 Relative risk (95% CI) 1.00 0.96 (0.80, 1.15) 0.92 (0.77, 1.11) 0.81 (0.67, 0.99) 0.75 (0.61, 0.91) 0.0012 
Fiber from cereals       
 Range (g/d) <3.4 3.4–4.3 4.4–5.5 5.6–7.5 >7.5 — 
 Median (g/d) 2.66 3.87 4.91 6.40 9.43 — 
 Cases (n281 265 241 198 156 — 
 Person-years 39637 40218 40621 40956 41222 — 
 Relative risk (95% CI) 1.00 0.93 (0.78, 1.11) 0.88 (0.73, 1.05) 0.77 (0.63, 0.93) 0.64 (0.53, 0.79) 0.0001 
Fiber from fruit       
 Range (g/d) <2.55 2.55–3.85 3.86–5.19 5.20–7.02 >7.02 — 
 Median (g/d) 1.71 3.22 4.51 6.00 8.72 — 
 Cases (n221 212 251 218 239 — 
 Person-years 39471 40491 40698 41083 40911 — 
 Relative risk (95% CI) 1.00 0.98 (0.81, 1.20) 1.14 (0.94, 1.38) 1.06 (0.87, 1.29) 1.17 (0.96, 1.42) 0.081 
Fiber from vegetables       
 Range (g/d) <5.75 5.75–7.11 7.12–8.38 8.39–10.14 >10.14 — 
 Median (g/d) 4.71 6.48 7.72 9.15 11.74 — 
 Cases (n228 227 237 228 221 — 
 Person-years 39877 40657 40721 40797 40601 — 
 Relative risk (95% CI) 1.00 1.07 (0.88, 1.30) 1.12 (0.92, 1.35) 1.12 (0.92, 1.36) 0.97 (0.80, 1.18) 0.77 
Fiber from legumes       
 Range (g/d) <0.31 0.31–0.56 0.57–0.83 0.84–1.21 >1.21 — 
 Median (g/d) 0.095 0.45 0.70 0.98 1.74 — 
 Cases (n250 227 216 219 229 — 
 Person-years 40183 40603 40582 40593 40692 — 
 Relative risk (95% CI) 1.00 0.97 (0.80, 1.18) 0.95 (0.78, 1.16) 1.04 (0.85, 1.27) 1.10 (0.91, 1.33) 0.17 
Dietary magnesium       
 Range (mg/d) <242 242–270 271–297 298–332 >332 — 
 Median (mg/d) 220 257 284 312 362 — 
 Cases (n309 235 220 216 161 — 
 Person-years 39866 40085 40670 40909 41123 — 
 Relative risk (95% CI) 1.0 0.81 (0.68, 0.96) 0.82 (0.68, 0.98) 0.81 (0.67, 0.97) 0.67 (0.55, 0.82) 0.0003 
Quintile of intake
Variable1reverses diabetes type 2 episode (🔴 hacks) | reverses diabetes type 2 zucchinihow to reverses diabetes type 2 for . 2345P for trend
Total dietary fiber       
 Range (g/d) <15.3 15.3–17.8 17.9–20.3 20.4–23.6 >23.6 — 
 Median (g/d) 13.27 16.64 19.03 21.82 26.50 — 
 Cases (n253 265 234 212 177 — 
 Person-years 39587 40016 40534 41396 41120 — 
 Relative risk (95% CI) 1.00 1.09 (0.91, 1.31) 1.00 (0.83, 1.21) 0.94 (0.78, 1.15) 0.78 (0.64, 0.96) 0.005 
Total soluble fiber       
 Range (g/d) <4.8 4.8–5.5 5.6–6.2 6.3–7.2 >7.2 — 
 Median (g/d) 4.19 5.19 5.88 6.64 8.01 — 
 Cases (n250 231 237 221 202 — 
 Person-years 39576 40572 40637 40988 40880 — 
 Relative risk (95% CI) 1.00 1.00 (0.83, 1.21) 1.02 (0.84, 1.23) 0.99 (0.82, 1.20) 0.89 (0.73, 1.08) 0.23 
Total insoluble fiber       
 Range (g/d) <11.4 11.4–13.4 13.5–15.2 15.3–17.7 >17.7 — 
 Median (g/d) 9.93 12.48 14.31 16.34 19.84 — 
 Cases (n268 255 232 204 182 — 
 Person-years 39737 40159 40680 41080 40996 — 
 Relative risk (95% CI) 1.00 0.96 (0.80, 1.15) 0.92 (0.77, 1.11) 0.81 (0.67, 0.99) 0.75 (0.61, 0.91) 0.0012 
Fiber from cereals       
 Range (g/d) <3.4 3.4–4.3 4.4–5.5 5.6–7.5 >7.5 — 
 Median (g/d) 2.66 3.87 4.91 6.40 9.43 — 
 Cases (n281 265 241 198 156 — 
 Person-years 39637 40218 40621 40956 41222 — 
 Relative risk (95% CI) 1.00 0.93 (0.78, 1.11) 0.88 (0.73, 1.05) 0.77 (0.63, 0.93) 0.64 (0.53, 0.79) 0.0001 
Fiber from fruit       
 Range (g/d) <2.55 2.55–3.85 3.86–5.19 5.20–7.02 >7.02 — 
 Median (g/d) 1.71 3.22 4.51 6.00 8.72 — 
 Cases (n221 212 251 218 239 — 
 Person-years 39471 40491 40698 41083 40911 — 
 Relative risk (95% CI) 1.00 0.98 (0.81, 1.20) 1.14 (0.94, 1.38) 1.06 (0.87, 1.29) 1.17 (0.96, 1.42) 0.081 
Fiber from vegetables       
 Range (g/d) <5.75 5.75–7.11 7.12–8.38 8.39–10.14 >10.14 — 
 Median (g/d) 4.71 6.48 7.72 9.15 11.74 — 
 Cases (n228 227 237 228 221 — 
 Person-years 39877 40657 40721 40797 40601 — 
 Relative risk (95% CI) 1.00 1.07 (0.88, 1.30) 1.12 (0.92, 1.35) 1.12 (0.92, 1.36) 0.97 (0.80, 1.18) 0.77 
Fiber from legumes       
 Range (g/d) <0.31 0.31–0.56 0.57–0.83 0.84–1.21 >1.21 — 
 Median (g/d) 0.095 0.45 0.70 0.98 1.74 — 
 Cases (n250 227 216 219 229 — 
 Person-years 40183 40603 40582 40593 40692 — 
 Relative risk (95% CI) 1.00 0.97 (0.80, 1.18) 0.95 (0.78, 1.16) 1.04 (0.85, 1.27) 1.10 (0.91, 1.33) 0.17 
Dietary magnesium       
 Range (mg/d) <242 242–270 271–297 298–332 >332 — 
 Median (mg/d) 220 257 284 312 362 — 
 Cases (n309 235 220 216 161 — 
 Person-years 39866 40085 40670 40909 41123 — 
 Relative risk (95% CI) 1.0 0.81 (0.68, 0.96) 0.82 (0.68, 0.98) 0.81 (0.67, 0.97) 0.67 (0.55, 0.82) 0.0003 
reverses diabetes type 2 urine test (🔥 youngest age in pediatrics) | reverses diabetes type 2 mellitus with hyperglycemiahow to reverses diabetes type 2 for 1

Proportional hazards regression models were adjusted for the same covariates listed in Table 2. Person-years were calculated as described in Methods.

TABLE 4

Multivariate-adjusted relative risks of incident type 2 diabetes across quintiles of energy-adjusted dietary fiber and magnesium intakes among 35988 Iowa women, 1986–19921

Quintile of intakereverses diabetes type 2 young (⭐️ coronavirus risk) | reverses diabetes type 2 underweighthow to reverses diabetes type 2 for . 
Variablereverses diabetes type 2 without medication (🔥 treatments and preventions) | reverses diabetes type 2 sugar levelhow to reverses diabetes type 2 for . 12345P for trendreverses diabetes type 2 glucose levels (👍 janumet) | reverses diabetes type 2 treatments lexingtonhow to reverses diabetes type 2 for . 
Total dietary fiber       
 Range (g/d) <15.3 15.3–17.8 17.9–20.3 20.4–23.6 >23.6 — 
 Median (g/d) 13.27 16.64 19.03 21.82 26.50 — 
 Cases (n253 265 234 212 177 — 
 Person-years 39587 40016 40534 41396 41120 — 
 Relative risk (95% CI) 1.00 1.09 (0.91, 1.31) 1.00 (0.83, 1.21) 0.94 (0.78, 1.15) 0.78 (0.64, 0.96) 0.005 
Total soluble fiber       
 Range (g/d) <4.8 4.8–5.5 5.6–6.2 6.3–7.2 >7.2 — 
 Median (g/d) 4.19 5.19 5.88 6.64 8.01 — 
 Cases (n250 231 237 221 202 — 
 Person-years 39576 40572 40637 40988 40880 — 
 Relative risk (95% CI) 1.00 1.00 (0.83, 1.21) 1.02 (0.84, 1.23) 0.99 (0.82, 1.20) 0.89 (0.73, 1.08) 0.23 
Total insoluble fiber       
 Range (g/d) <11.4 11.4–13.4 13.5–15.2 15.3–17.7 >17.7 — 
 Median (g/d) 9.93 12.48 14.31 16.34 19.84 — 
 Cases (n268 255 232 204 182 — 
 Person-years 39737 40159 40680 41080 40996 — 
 Relative risk (95% CI) 1.00 0.96 (0.80, 1.15) 0.92 (0.77, 1.11) 0.81 (0.67, 0.99) 0.75 (0.61, 0.91) 0.0012 
Fiber from cereals       
 Range (g/d) <3.4 3.4–4.3 4.4–5.5 5.6–7.5 >7.5 — 
 Median (g/d) 2.66 3.87 4.91 6.40 9.43 — 
 Cases (n281 265 241 198 156 — 
 Person-years 39637 40218 40621 40956 41222 — 
 Relative risk (95% CI) 1.00 0.93 (0.78, 1.11) 0.88 (0.73, 1.05) 0.77 (0.63, 0.93) 0.64 (0.53, 0.79) 0.0001 
Fiber from fruit       
 Range (g/d) <2.55 2.55–3.85 3.86–5.19 5.20–7.02 >7.02 — 
 Median (g/d) 1.71 3.22 4.51 6.00 8.72 — 
 Cases (n221 212 251 218 239 — 
 Person-years 39471 40491 40698 41083 40911 — 
 Relative risk (95% CI) 1.00 0.98 (0.81, 1.20) 1.14 (0.94, 1.38) 1.06 (0.87, 1.29) 1.17 (0.96, 1.42) 0.081 
Fiber from vegetables       
 Range (g/d) <5.75 5.75–7.11 7.12–8.38 8.39–10.14 >10.14 — 
 Median (g/d) 4.71 6.48 7.72 9.15 11.74 — 
 Cases (n228 227 237 228 221 — 
 Person-years 39877 40657 40721 40797 40601 — 
 Relative risk (95% CI) 1.00 1.07 (0.88, 1.30) 1.12 (0.92, 1.35) 1.12 (0.92, 1.36) 0.97 (0.80, 1.18) 0.77 
Fiber from legumes       
 Range (g/d) <0.31 0.31–0.56 0.57–0.83 0.84–1.21 >1.21 — 
 Median (g/d) 0.095 0.45 0.70 0.98 1.74 — 
 Cases (n250 227 216 219 229 — 
 Person-years 40183 40603 40582 40593 40692 — 
 Relative risk (95% CI) 1.00 0.97 (0.80, 1.18) 0.95 (0.78, 1.16) 1.04 (0.85, 1.27) 1.10 (0.91, 1.33) 0.17 
Dietary magnesium       
 Range (mg/d) <242 242–270 271–297 298–332 >332 — 
 Median (mg/d) 220 257 284 312 362 — 
 Cases (n309 235 220 216 161 — 
 Person-years 39866 40085 40670 40909 41123 — 
 Relative risk (95% CI) 1.0 0.81 (0.68, 0.96) 0.82 (0.68, 0.98) 0.81 (0.67, 0.97) 0.67 (0.55, 0.82) 0.0003 
Quintile of intake
Variable1reverses diabetes type 2 wounds (👍 korean) | reverses diabetes type 2 with chronic kidney diseasehow to reverses diabetes type 2 for . 234reverses diabetes type 2 treatment options (👍 young adults) | reverses diabetes type 2 occurs whenhow to reverses diabetes type 2 for for 1 last update 27 May 2020 .  . 5P for trendreverses diabetes type 2 kidshealth (⭐️ symptoms) | reverses diabetes type 2 quiz questionshow to reverses diabetes type 2 for the 1 last update 27 May 2020 .  . 
Total dietary fiber       
 Range (g/d) <15.3 15.3–17.8 17.9–20.3 20.4–23.6 >23.6 — 
 Median (g/d) 13.27 16.64 19.03 21.82 26.50 — 
 Cases (n253 265 234 212 177 — 
 Person-years 39587 40016 40534 41396 41120 — 
 Relative risk (95% CI) 1.00 1.09 (0.91, 1.31) 1.00 (0.83, 1.21) 0.94 (0.78, 1.15) 0.78 (0.64, 0.96) 0.005 
Total soluble fiber       
 Range (g/d) <4.8 4.8–5.5 5.6–6.2 6.3–7.2 >7.2 — 
 Median (g/d) 4.19 5.19 5.88 6.64 8.01 — 
 Cases (n250 231 237 221 202 — 
 Person-years 39576 40572 40637 40988 40880 — 
 Relative risk (95% CI) 1.00 1.00 (0.83, 1.21) 1.02 (0.84, 1.23) 0.99 (0.82, 1.20) 0.89 (0.73, 1.08) 0.23 
Total insoluble fiber       
 Range (g/d) <11.4 11.4–13.4 13.5–15.2 15.3–17.7 >17.7 — 
 Median (g/d) 9.93 12.48 14.31 16.34 19.84 — 
 Cases (n268 255 232 204 182 — 
 Person-years 39737 40159 40680 41080 40996 — 
 Relative risk (95% CI) 1.00 0.96 (0.80, 1.15) 0.92 (0.77, 1.11) 0.81 (0.67, 0.99) 0.75 (0.61, 0.91) 0.0012 
Fiber from cereals       
 Range (g/d) <3.4 3.4–4.3 4.4–5.5 5.6–7.5 >7.5 — 
 Median (g/d) 2.66 3.87 4.91 6.40 9.43 — 
 Cases (n281 265 241 198 156 — 
 Person-years 39637 40218 40621 40956 41222 — 
 Relative risk (95% CI) 1.00 0.93 (0.78, 1.11) 0.88 (0.73, 1.05) 0.77 (0.63, 0.93) 0.64 (0.53, 0.79) 0.0001 
Fiber from fruit       
 Range (g/d) <2.55 2.55–3.85 3.86–5.19 5.20–7.02 >7.02 — 
 Median (g/d) 1.71 3.22 4.51 6.00 8.72 — 
 Cases (n221 212 251 218 239 — 
 Person-years 39471 40491 40698 41083 40911 — 
 Relative risk (95% CI) 1.00 0.98 (0.81, 1.20) 1.14 (0.94, 1.38) 1.06 (0.87, 1.29) 1.17 (0.96, 1.42) 0.081 
Fiber from vegetables       
 Range (g/d) <5.75 5.75–7.11 7.12–8.38 8.39–10.14 >10.14 — 
 Median (g/d) 4.71 6.48 7.72 9.15 11.74 — 
 Cases (n228 227 237 228 221 — 
 Person-years 39877 40657 40721 40797 40601 — 
 Relative risk (95% CI) 1.00 1.07 (0.88, 1.30) 1.12 (0.92, 1.35) 1.12 (0.92, 1.36) 0.97 (0.80, 1.18) 0.77 
Fiber from legumes       
 Range (g/d) <0.31 0.31–0.56 0.57–0.83 0.84–1.21 >1.21 — 
 Median (g/d) 0.095 0.45 0.70 0.98 1.74 — 
 Cases (n250 227 216 219 229 — 
 Person-years 40183 40603 40582 40593 40692 — 
 Relative risk (95% CI) 1.00 0.97 (0.80, 1.18) 0.95 (0.78, 1.16) 1.04 (0.85, 1.27) 1.10 (0.91, 1.33) 0.17 
Dietary magnesium       
 Range (mg/d) <242 242–270 271–297 298–332 >332 — 
 Median (mg/d) 220 257 284 312 362 — 
 Cases (n309 235 220 216 161 — 
 Person-years 39866 40085 40670 40909 41123 — 
 Relative risk (95% CI) 1.0 0.81 (0.68, 0.96) 0.82 (0.68, 0.98) 0.81 (0.67, 0.97) 0.67 (0.55, 0.82) 0.0003 
1

Proportional hazards regression models were adjusted for the same covariates listed in Table 2. Person-years were calculated as described in Methods.

reverses diabetes type 2 natural treatment (🔴 prognosis) | reverses diabetes type 2 beta cellshow to reverses diabetes type 2 for Results from the multivariate-adjusted analyses shown in Table 4 and the age- and energy-adjusted analyses did not differ appreciably. Exceptions to this were an inverse relation between diabetes and soluble fiber and the lack of an association between diabetes and fiber from fruit in the age- and energy-adjusted analyses. Relative risks in the age- and energy-adjusted analysis were 1.00, 0.91, 0.94, 0.86, and 0.77 (P for trend: 0.0046) across quintiles of soluble fiber intake and 1.00, 0.96, 1.12, 0.97, and 1.05 (P for trend: 0.63) across quintiles of fiber intake from fruit.

Associations between diabetes and food groups that contribute carbohydrates and fiber to the diet were also examined (Table 5). Consistent with the finding for cereal fiber, total grain intake was inversely related to incident diabetes. The multivariate-adjusted RR comparing the fifth and first quintiles of total grain intake was 0.68 (95% CI: 0.54, 0.87). Whole grains were more strongly inversely associated with risk of diabetes than were refined grains. Women in the highest quintile of whole grain intake had an adjusted RR of 0.79 (95% CI: 0.65, 0.96) compared with women in the lowest quintile (P for trend: 0.0089). Intakes of fruit, vegetables, and legumes were not strongly related to diabetes risk. These findings from the multivariate analysis differed only slightly from the age- and energy-adjusted estimates and the interpretation of findings did not change with adjustment for potential confounding factors. For example, age- and energy-adjusted RRs for whole grain intake were 1.00, 0.86, 0.92, 0.83, and 0.70 (P for trend: 0.0029) across quintiles of intake.

TABLE 5

Multivariate-adjusted relative risks of incident type 2 diabetes across quintiles of carbohydrate-rich food groups among 35988 Iowa women, 1986–19921

Quintile of food group intake
Food group123 the 1 last update 27 May 2020 .  . 45P for trend
Total grains       
 Range of intake (servings/wk) <13.0 13–18.5 19–24.5 25–33 >33 — 
 Median (servings/wk) 9.5 15.5 21.5 28.5 41.5 — 
 Cases (n235 218 237 234 217 — 
 Person-years 40107 40670 39674 41013 41190 — 
 Relative risk (95% CI) 1.00 0.89 (0.74, 1.08) 0.94 (0.77, 1.14) 0.81 (0.66, 0.99) 0.68 (0.54, 0.87) 0.0011 
Whole grains       
 Range of intake (servings/wk) <3.0 3.0–5.5 6.0–8.0 8.5–17.5 >17.5 — 
 Median (servings/wk) 1.0 4.0 7.0 10.5 20.5 — 
 Cases (n250 234 234 216 207 — 
 Person-years 38577 39622 40548 41899 42007 — 
 Relative risk (95% CI) 1.00 0.99 (0.82, 1.18) 0.98 (0.81, 1.18) 0.92 (0.76, 1.11) 0.79 (0.65, 0.96) 0.0089 
Refined grains       
 Range of intake (servings/wk) <6.0 6.0–9.5 10–13.5 14–22 >22 — 
 Median (servings/wk) 3.5 7.5 11.5 17.5 29.5 — 
 Cases (n228 235 175 253 250 — 
 Person-years 40402 43117 36757 42196 40182 — 
 Relative risk (95% CI) 1.00 0.96 (0.79, 1.16) 0.81 (0.66, 0.99) 0.98 (0.81, 1.19) 0.87 (0.70, 1.08) 0.36 
Total fruit and vegetable       
 Range of intake (servings/wk) <23 23–30 31–39 40–51 >51 — 
 Median (servings/wk) 18.0 27.0 35.0 44.0 62.0 — 
 Cases (n213 215 244 240 229 — 
 Person-years 39047 39813 42850 39927 41016 — 
 Relative risk (95% CI) 1.00 1.00 (0.82, 1.22) 1.12 (0.92, 1.36) 1.21 (0.99, 1.49) 1.05 (0.84, 1.31) 0.41 
Total fruit       
 Range of intake (servings/wk) <6.25 6.5–10 10.1–13.5 13.6–19 >19 — 
 Median (servings/wk) 4.0 8.5 12.0 16.0 23.5 — 
 Cases (n218 246 206 227 244 — 
 Person-years 39451 43325 38352 39911 41614 — 
 Relative risk (95% CI) 1.00 1.05 (0.87, 1.26) 1.00 (0.82, 1.22) 1.08 (0.88, 1.32) 1.14 (0.93, 1.39) 0.20 
Total vegetable       
 Range of intake (servings/wk) <14 14–19.4 19.5–25 25.1–33.5 >33.5 — 
 Median (servings/wk) 11.0 17.0 22.0 28.5 41.5 — 
 Cases (n230 217 227 229 238 — 
 Person-years 40243 38628 43378 39374 41029 — 
 Relative risk (95% CI) 1.00 1.03 (0.85, 1.24) 0.99 (0.82, 1.21) 1.09 (0.90, 1.34) 1.07 (0.86, 1.32) 0.45 
Mature beans       
 Range of intake (servings/wk) <1.5 1.5–2 2.25–3 3.5–4.5 >4.5 — 
 Median (servings/wk) 1.0 2.0 2.5 4.0 6.5 — 
 Cases (n151 328 208 244 210 — 
 Person-years 29059 61571 37269 38530 36224 — 
 Relative risk (95% CI) 1.00 1.01 (0.82, 1.23) 1.06 (0.85, 1.31) 1.10 (0.89, 1.36) 0.96 (0.76, 1.20) 0.85 
Quintile of food group intake
Food group1234reverses diabetes type 2 level (🔴 by race) | reverses diabetes type 2 songhow to reverses diabetes type 2 for . 5 for 1 last update 27 May 2020 .  . P for trend
Total grains       
 Range of intake (servings/wk) <13.0 13–18.5 19–24.5 25–33 >33 — 
 Median (servings/wk) 9.5 15.5 21.5 28.5 41.5 — 
 Cases (n235 218 237 234 217 — 
 Person-years 40107 40670 39674 41013 41190 — 
 Relative risk (95% CI) 1.00 0.89 (0.74, 1.08) 0.94 (0.77, 1.14) 0.81 (0.66, 0.99) 0.68 (0.54, 0.87) 0.0011 
Whole grains       
 Range of intake (servings/wk) <3.0 3.0–5.5 6.0–8.0 8.5–17.5 >17.5 — 
 Median (servings/wk) 1.0 4.0 7.0 10.5 20.5 — 
 Cases (n250 234 234 216 207 — 
 Person-years 38577 39622 40548 41899 42007 — 
 Relative risk (95% CI) 1.00 0.99 (0.82, 1.18) 0.98 (0.81, 1.18) 0.92 (0.76, 1.11) 0.79 (0.65, 0.96) 0.0089 
Refined grains       
 Range of intake (servings/wk) <6.0 6.0–9.5 10–13.5 14–22 >22 — 
 Median (servings/wk) 3.5 7.5 11.5 17.5 29.5 — 
 Cases (n228 235 175 253 250 — 
 Person-years 40402 43117 36757 42196 40182 — 
 Relative risk (95% CI) 1.00 0.96 (0.79, 1.16) 0.81 (0.66, 0.99) 0.98 (0.81, 1.19) 0.87 (0.70, 1.08) 0.36 
Total fruit and vegetable       
 Range of intake (servings/wk) <23 23–30 31–39 40–51 >51 — 
 Median (servings/wk) 18.0 27.0 35.0 44.0 62.0 — 
 Cases (n213 215 244 240 229 — 
 Person-years 39047 39813 42850 39927 41016 — 
 Relative risk (95% CI) 1.00 1.00 (0.82, 1.22) 1.12 (0.92, 1.36) 1.21 (0.99, 1.49) 1.05 (0.84, 1.31) 0.41 
Total fruit       
 Range of intake (servings/wk) <6.25 6.5–10 10.1–13.5 13.6–19 >19 — 
 Median (servings/wk) 4.0 8.5 12.0 16.0 23.5 — 
 Cases (n218 246 206 227 244 — 
 Person-years 39451 43325 38352 39911 41614 — 
 Relative risk (95% CI) 1.00 1.05 (0.87, 1.26) 1.00 (0.82, 1.22) 1.08 (0.88, 1.32) 1.14 (0.93, 1.39) 0.20 
Total vegetable       
 Range of intake (servings/wk) <14 14–19.4 19.5–25 25.1–33.5 >33.5 — 
 Median (servings/wk) 11.0 17.0 22.0 28.5 41.5 — 
 Cases (n230 217 227 229 238 — 
 Person-years 40243 38628 43378 39374 41029 — 
 Relative risk (95% CI) 1.00 1.03 (0.85, 1.24) 0.99 (0.82, 1.21) 1.09 (0.90, 1.34) 1.07 (0.86, 1.32) 0.45 
Mature beans       
 Range of intake (servings/wk) <1.5 1.5–2 2.25–3 3.5–4.5 >4.5 — 
 Median (servings/wk) 1.0 2.0 2.5 4.0 6.5 — 
 Cases (n151 328 208 244 210 — 
 Person-years 29059 61571 37269 38530 36224 — 
 Relative risk (95% CI) 1.00 1.01 (0.82, 1.23) 1.06 (0.85, 1.31) 1.10 (0.89, 1.36) 0.96 (0.76, 1.20) 0.85 
1

Proportional hazards regression models were adjusted for the same covariates listed in Table 2. Person-years were calculated as described in Methods.

reverses diabetes type 2 yeast infections (☑ food list) | reverses diabetes type 2 jardiancehow to reverses diabetes type 2 for TABLE 5

Multivariate-adjusted relative risks of incident type 2 diabetes across quintiles of carbohydrate-rich food groups among 35988 Iowa women, 1986–19921

Quintile of food group intake
Food group the 1 last update 27 May 2020 .  . 1 for 1 last update 27 May 2020 .  . 2 the 1 last update 27 May 2020 .  . 3 for 1 last update 27 May 2020 .  . 4reverses diabetes type 2 reversal (☑ reddit) | reverses diabetes type 2 mellitus with hyperglycemiahow to reverses diabetes type 2 for . 5P for trend
Total grains       
 Range of intake (servings/wk) <13.0 13–18.5 19–24.5 25–33 >33 — 
 Median (servings/wk) 9.5 15.5 21.5 28.5 41.5 — 
 Cases (n235 218 237 234 217 — 
 Person-years 40107 40670 39674 41013 41190 — 
 Relative risk (95% CI) 1.00 0.89 (0.74, 1.08) 0.94 (0.77, 1.14) 0.81 (0.66, 0.99) 0.68 (0.54, 0.87) 0.0011 
Whole grains       
 Range of intake (servings/wk) <3.0 3.0–5.5 6.0–8.0 8.5–17.5 >17.5 — 
 Median (servings/wk) 1.0 4.0 7.0 10.5 20.5 — 
 Cases (n250 234 234 216 207 — 
 Person-years 38577 39622 40548 41899 42007 — 
 Relative risk (95% CI) 1.00 0.99 (0.82, 1.18) 0.98 (0.81, 1.18) 0.92 (0.76, 1.11) 0.79 (0.65, 0.96) 0.0089 
Refined grains       
 Range of intake (servings/wk) <6.0 6.0–9.5 10–13.5 14–22 >22 — 
 Median (servings/wk) 3.5 7.5 11.5 17.5 29.5 — 
 Cases (n228 235 175 253 250 — 
 Person-years 40402 43117 36757 42196 40182 — 
 Relative risk (95% CI) 1.00 0.96 (0.79, 1.16) 0.81 (0.66, 0.99) 0.98 (0.81, 1.19) 0.87 (0.70, 1.08) 0.36 
Total fruit and vegetable       
 Range of intake (servings/wk) <23 23–30 31–39 40–51 >51 — 
 Median (servings/wk) 18.0 27.0 35.0 44.0 62.0 — 
 Cases (n213 215 244 240 229 — 
 Person-years 39047 39813 42850 39927 41016 — 
 Relative risk (95% CI) 1.00 1.00 (0.82, 1.22) 1.12 (0.92, 1.36) 1.21 (0.99, 1.49) 1.05 (0.84, 1.31) 0.41 
Total fruit       
 Range of intake (servings/wk) <6.25 6.5–10 10.1–13.5 13.6–19 >19 — 
 Median (servings/wk) 4.0 8.5 12.0 16.0 23.5 — 
 Cases (n218 246 206 227 244 — 
 Person-years 39451 43325 38352 39911 41614 — 
 Relative risk (95% CI) 1.00 1.05 (0.87, 1.26) 1.00 (0.82, 1.22) 1.08 (0.88, 1.32) 1.14 (0.93, 1.39) 0.20 
Total vegetable       
 Range of intake (servings/wk) <14 14–19.4 19.5–25 25.1–33.5 >33.5 — 
 Median (servings/wk) 11.0 17.0 22.0 28.5 41.5 — 
 Cases (n230 217 227 229 238 — 
 Person-years 40243 38628 43378 39374 41029 — 
 Relative risk (95% CI) 1.00 1.03 (0.85, 1.24) 0.99 (0.82, 1.21) 1.09 (0.90, 1.34) 1.07 (0.86, 1.32) 0.45 
Mature beans       
 Range of intake (servings/wk) <1.5 1.5–2 2.25–3 3.5–4.5 >4.5 — 
 Median (servings/wk) 1.0 2.0 2.5 4.0 6.5 — 
 Cases (n151 328 208 244 210 — 
 Person-years 29059 61571 37269 38530 36224 — 
 Relative risk (95% CI) 1.00 1.01 (0.82, 1.23) 1.06 (0.85, 1.31) 1.10 (0.89, 1.36) 0.96 (0.76, 1.20) 0.85 
Quintile of food group intake
Food group1 the 1 last update 27 May 2020 .  . 2345P for trend
Total grains       
 Range of intake (servings/wk) <13.0 13–18.5 19–24.5 25–33 >33 — 
 Median (servings/wk) 9.5 15.5 21.5 28.5 41.5 — 
 Cases (n235 218 237 234 217 — 
 Person-years 40107 40670 39674 41013 41190 — 
 Relative risk (95% CI) 1.00 0.89 (0.74, 1.08) 0.94 (0.77, 1.14) 0.81 (0.66, 0.99) 0.68 (0.54, 0.87) 0.0011 
Whole grains       
 Range of intake (servings/wk) <3.0 3.0–5.5 6.0–8.0 8.5–17.5 >17.5 — 
 Median (servings/wk) 1.0 4.0 7.0 10.5 20.5 — 
 Cases (n250 234 234 216 207 — 
 Person-years 38577 39622 40548 41899 42007 — 
 Relative risk (95% CI) 1.00 0.99 (0.82, 1.18) 0.98 (0.81, 1.18) 0.92 (0.76, 1.11) 0.79 (0.65, 0.96) 0.0089 
Refined grains       
 Range of intake (servings/wk) <6.0 6.0–9.5 10–13.5 14–22 >22 — 
 Median (servings/wk) 3.5 7.5 11.5 17.5 29.5 — 
 Cases (n228 235 175 253 250 — 
 Person-years 40402 43117 36757 42196 40182 — 
 Relative risk (95% CI) 1.00 0.96 (0.79, 1.16) 0.81 (0.66, 0.99) 0.98 (0.81, 1.19) 0.87 (0.70, 1.08) 0.36 
Total fruit and vegetable       
 Range of intake (servings/wk) <23 23–30 31–39 40–51 >51 — 
 Median (servings/wk) 18.0 27.0 35.0 44.0 62.0 — 
 Cases (n213 215 244 240 229 — 
 Person-years 39047 39813 42850 39927 41016 — 
 Relative risk (95% CI) 1.00 1.00 (0.82, 1.22) 1.12 (0.92, 1.36) 1.21 (0.99, 1.49) 1.05 (0.84, 1.31) 0.41 
Total fruit       
 Range of intake (servings/wk) <6.25 6.5–10 10.1–13.5 13.6–19 >19 — 
 Median (servings/wk) 4.0 8.5 12.0 16.0 23.5 — 
 Cases (n218 246 206 227 244 — 
 Person-years 39451 43325 38352 39911 41614 — 
 Relative risk (95% CI) 1.00 1.05 (0.87, 1.26) 1.00 (0.82, 1.22) 1.08 (0.88, 1.32) 1.14 (0.93, 1.39) 0.20 
Total vegetable       
 Range of intake (servings/wk) <14 14–19.4 19.5–25 25.1–33.5 >33.5 — 
 Median (servings/wk) 11.0 17.0 22.0 28.5 41.5 — 
 Cases (n230 217 227 229 238 — 
 Person-years 40243 38628 43378 39374 41029 — 
 Relative risk (95% CI) 1.00 1.03 (0.85, 1.24) 0.99 (0.82, 1.21) 1.09 (0.90, 1.34) 1.07 (0.86, 1.32) 0.45 
Mature beans       
 Range of intake (servings/wk) <1.5 1.5–2 2.25–3 3.5–4.5 >4.5 — 
 Median (servings/wk) 1.0 2.0 2.5 4.0 6.5 — 
 Cases (n151 328 208 244 210 — 
 Person-years 29059 61571 37269 38530 36224 — 
 Relative risk (95% CI) 1.00 1.01 (0.82, 1.23) 1.06 (0.85, 1.31) 1.10 (0.89, 1.36) 0.96 (0.76, 1.20) 0.85 
1

Proportional hazards regression models were adjusted for the same covariates listed in Table 2. Person-years were calculated as described in Methods.

Inclusion of family history of diabetes as a covariate did not substantially alter the risk estimates presented in Tables 25. To control for recent dietary changes, multivariate models were also run that excluded women who reported cancer or heart disease at baseline. Relative risk estimates were not appreciably changed by these exclusions.

Results from multivariate regression models that included more than one of the dietary components under study are shown in Table 6. Dietary intakes of foods and nutrients are highly correlated and these models were intended to help distinguish the effects of dietary variables that appeared related to type 2 diabetes in these data. Each of the 4 models was adjusted for the covariates listed in the footnote as well as for the dietary components listed below the model headings. Because our findings were strongest for grain intake, these analyses focused on the effects of adjusting grains for cereal fiber and dietary magnesium, 2 components of grains that were strongly related to type 2 diabetes in these data. Results for total grains and whole grains were attenuated after the models were adjusted for cereal fiber. For example, RRs were 1.00, 1.01, 1.02, 1.01, and 0.93 (P for trend: 0.46) across quintiles of whole-grain intake. However, both cereal fiber and dietary magnesium remained significantly and inversely related to type 2 diabetes. Simultaneous adjustment for grains, cereal grains, and dietary magnesium attenuated the findings for cereal fiber and dietary magnesium, but inverse dose-response relations were still apparent for these 2 grain components. For example, RRs from model 4 were 1.00, 0.93, 0.90, 0.80, and 0.71 (P for trend: 0.0017) across quintiles of cereal fiber intake and 1.00, 0.82, 0.86, 0.88, and 0.76 (P for trend: 0.048) across quintiles of dietary magnesium intake. Overall, these findings suggest that the inverse relation between whole-grain intake and type 2 diabetes may be due to fiber and components of whole grains that are highly correlated with fiber.

TABLE 6

Diet and multivariate-adjusted relative risks of incident type 2 diabetes across quintiles of grain, dietary fiber, and dietary magnesium intake among 35988 Iowa women, 1986–19921

the 1 last update 27 May 2020 .  . Quintile of intake
Variable12345reverses diabetes type 2 kidney (☑ values) | reverses diabetes type 2 food choiceshow to reverses diabetes type 2 for for 1 last update 27 May 2020 .  . P for trend
Model 1       
 Total grains       
  Relative risk (95% CI) 1.00 0.92 (0.76, 1.12) 0.99 (0.81, 1.21) 0.88 (0.71, 1.09) 0.80 (0.62, 1.04) 0.090 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.96 (0.80, 1.15) 0.92 (0.76, 1.12) 0.82 (0.67, 1.00) 0.69 (0.55, 0.86) 0.0002 
Model 2       
 Total grains       
  Relative risk (95% CI) 1.00 0.90 (0.74, 1.10) 0.96 (0.79, 1.17) 0.84 (0.67, 1.04) 0.73 (0.56, 0.96) 0.022 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.98 (0.82, 1.18) 0.97 (0.80, 1.18) 0.88 (0.71, 1.09) 0.78 (0.62, 0.99) 0.025 
 Dietary magnesium       
  Relative risk (95% CI) 1.00 0.81 (0.68, 0.97) 0.84 (0.70, 1.01) 0.85 (0.70, 1.03) 0.72 (0.58, 0.90) 0.013 
Model 3       
 Whole grains       
  Relative risk (95% CI) 1.00 1.01 (0.84, 1.21) 1.02 (0.85, 1.23) 1.01 (0.83, 1.24) 0.93 (0.75, 1.16) 0.46 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.93 (0.78, 1.11) 0.89 (0.74, 1.08) 0.78 (0.64, 0.96) 0.66 (0.53, 0.83) 0.0001 
Model 4       
 Whole grains       
  Relative risk (95% CI) 1.00 1.03 (0.86, 1.24) 1.05 (0.87, 1.27) 0.97 (0.86, 1.29) 0.82 (0.78, 1.21) 0.69 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.93 (0.78, 1.12) 0.90 (0.74, 1.09) 0.80 (0.65, 0.99) 0.71 (0.56, 0.89) 0.0017 
 Dietary magnesium       
  Relative risk (95% CI) 1.00 0.82 (0.69, 0.99) 0.86 (0.71, 1.03) 0.88 (0.73, 1.06) 0.76 (0.62, 0.95) 0.048 
Quintile of intake
Variable12345reverses diabetes type 2 lifestyle (👍 nature journal) | reverses diabetes type 2 ankle swellinghow to reverses diabetes type 2 for . P for trend the 1 last update 27 May 2020 .  . 
Model 1       
 Total grains       
  Relative risk (95% CI) 1.00 0.92 (0.76, 1.12) 0.99 (0.81, 1.21) 0.88 (0.71, 1.09) 0.80 (0.62, 1.04) 0.090 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.96 (0.80, 1.15) 0.92 (0.76, 1.12) 0.82 (0.67, 1.00) 0.69 (0.55, 0.86) 0.0002 
Model 2       
 Total grains       
  Relative risk (95% CI) 1.00 0.90 (0.74, 1.10) 0.96 (0.79, 1.17) 0.84 (0.67, 1.04) 0.73 (0.56, 0.96) 0.022 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.98 (0.82, 1.18) 0.97 (0.80, 1.18) 0.88 (0.71, 1.09) 0.78 (0.62, 0.99) 0.025 
 Dietary magnesium       
  Relative risk (95% CI) 1.00 0.81 (0.68, 0.97) 0.84 (0.70, 1.01) 0.85 (0.70, 1.03) 0.72 (0.58, 0.90) 0.013 
Model 3       
 Whole grains       
  Relative risk (95% CI) 1.00 1.01 (0.84, 1.21) 1.02 (0.85, 1.23) 1.01 (0.83, 1.24) 0.93 (0.75, 1.16) 0.46 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.93 (0.78, 1.11) 0.89 (0.74, 1.08) 0.78 (0.64, 0.96) 0.66 (0.53, 0.83) 0.0001 
Model 4       
 Whole grains       
  Relative risk (95% CI) 1.00 1.03 (0.86, 1.24) 1.05 (0.87, 1.27) 0.97 (0.86, 1.29) 0.82 (0.78, 1.21) 0.69 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.93 (0.78, 1.12) 0.90 (0.74, 1.09) 0.80 (0.65, 0.99) 0.71 (0.56, 0.89) 0.0017 
 Dietary magnesium       
  Relative risk (95% CI) 1.00 0.82 (0.69, 0.99) 0.86 (0.71, 1.03) 0.88 (0.73, 1.06) 0.76 (0.62, 0.95) 0.048 
1

Proportional the 1 last update 27 May 2020 hazards regression models were simultaneously adjusted for the same covariates listed in Table 2 and for the dietary factors listed under each model heading.Proportional hazards regression models were simultaneously adjusted for the same covariates listed in Table 2 and for the dietary factors listed under each model heading.

TABLE 6

Diet and multivariate-adjusted relative risks of incident type 2 diabetes across quintiles of grain, dietary fiber, and dietary magnesium intake among 35988 Iowa women, 1986–19921

Quintile of intakereverses diabetes type 2 naturally with diet (👍 breakfast) | reverses diabetes type 2 breakfasthow to reverses diabetes type 2 for . 
Variable12reverses diabetes type 2 oatmeal (⭐️ straight talk) | reverses diabetes type 2 pathophyshow to reverses diabetes type 2 for for 1 last update 27 May 2020 .  . 345P for trend
Model 1       
 Total grains       
  Relative risk (95% CI) 1.00 0.92 (0.76, 1.12) 0.99 (0.81, 1.21) 0.88 (0.71, 1.09) 0.80 (0.62, 1.04) 0.090 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.96 (0.80, 1.15) 0.92 (0.76, 1.12) 0.82 (0.67, 1.00) 0.69 (0.55, 0.86) 0.0002 
Model 2       
 Total grains       
  Relative risk (95% CI) 1.00 0.90 (0.74, 1.10) 0.96 (0.79, 1.17) 0.84 (0.67, 1.04) 0.73 (0.56, 0.96) 0.022 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.98 (0.82, 1.18) 0.97 (0.80, 1.18) 0.88 (0.71, 1.09) 0.78 (0.62, 0.99) 0.025 
 Dietary magnesium       
  Relative risk (95% CI) 1.00 0.81 (0.68, 0.97) 0.84 (0.70, 1.01) 0.85 (0.70, 1.03) 0.72 (0.58, 0.90) 0.013 
Model 3       
 Whole grains       
  Relative risk (95% CI) 1.00 1.01 (0.84, 1.21) 1.02 (0.85, 1.23) 1.01 (0.83, 1.24) 0.93 (0.75, 1.16) 0.46 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.93 (0.78, 1.11) 0.89 (0.74, 1.08) 0.78 (0.64, 0.96) 0.66 (0.53, 0.83) 0.0001 
Model 4       
 Whole grains       
  Relative risk (95% CI) 1.00 1.03 (0.86, 1.24) 1.05 (0.87, 1.27) 0.97 (0.86, 1.29) 0.82 (0.78, 1.21) 0.69 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.93 (0.78, 1.12) 0.90 (0.74, 1.09) 0.80 (0.65, 0.99) 0.71 (0.56, 0.89) 0.0017 
 Dietary magnesium       
  Relative risk (95% CI) 1.00 0.82 (0.69, 0.99) 0.86 (0.71, 1.03) 0.88 (0.73, 1.06) 0.76 (0.62, 0.95) 0.048 
Quintile of intake
Variable12345P for trend for 1 last update 27 May 2020 .  . 
Model 1       
 Total grains       
  Relative risk (95% CI) 1.00 0.92 (0.76, 1.12) 0.99 (0.81, 1.21) 0.88 (0.71, 1.09) 0.80 (0.62, 1.04) 0.090 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.96 (0.80, 1.15) 0.92 (0.76, 1.12) 0.82 (0.67, 1.00) 0.69 (0.55, 0.86) 0.0002 
Model 2       
 Total grains       
  Relative risk (95% CI) 1.00 0.90 (0.74, 1.10) 0.96 (0.79, 1.17) 0.84 (0.67, 1.04) 0.73 (0.56, 0.96) 0.022 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.98 (0.82, 1.18) 0.97 (0.80, 1.18) 0.88 (0.71, 1.09) 0.78 (0.62, 0.99) 0.025 
 Dietary magnesium       
  Relative risk (95% CI) 1.00 0.81 (0.68, 0.97) 0.84 (0.70, 1.01) 0.85 (0.70, 1.03) 0.72 (0.58, 0.90) 0.013 
Model 3       
 Whole grains       
  Relative risk (95% CI) 1.00 1.01 (0.84, 1.21) 1.02 (0.85, 1.23) 1.01 (0.83, 1.24) 0.93 (0.75, 1.16) 0.46 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.93 (0.78, 1.11) 0.89 (0.74, 1.08) 0.78 (0.64, 0.96) 0.66 (0.53, 0.83) 0.0001 
Model 4       
 Whole grains       
  Relative risk (95% CI) 1.00 1.03 (0.86, 1.24) 1.05 (0.87, 1.27) 0.97 (0.86, 1.29) 0.82 (0.78, 1.21) 0.69 
 Cereal fiber       
  Relative risk (95% CI) 1.00 0.93 (0.78, 1.12) 0.90 (0.74, 1.09) 0.80 (0.65, 0.99) 0.71 (0.56, 0.89) 0.0017 
 Dietary magnesium       
  Relative risk (95% CI) 1.00 0.82 (0.69, 0.99) 0.86 (0.71, 1.03) 0.88 (0.73, 1.06) 0.76 (0.62, 0.95) 0.048 
reverses diabetes type 2 yoga (🔥 young adults early death) | reverses diabetes type 2 natural treatment curehow to reverses diabetes type 2 for 1

Proportional hazards regression models were simultaneously adjusted for the same covariates listed in Table 2 and for the dietary factors listed under each model heading.

DISCUSSION

This prospective study of older women indicates that dietary carbohydrates may influence the risk of type 2 diabetes. After multivariate adjustment for several risk factors for diabetes, the data suggested strong inverse associations between incidence of diabetes and the 1 last update 27 May 2020 intakes of total grains, whole grains, dietary fiber, cereal fiber, and dietary magnesium.This prospective study of older women indicates that dietary carbohydrates may influence the risk of type 2 diabetes. After multivariate adjustment for several risk factors for diabetes, the data suggested strong inverse associations between incidence of diabetes and intakes of total grains, whole grains, dietary fiber, cereal fiber, and dietary magnesium.

The relation between dietary fiber and diabetes has received much attention (11, 12, 1416, 2936). Fiber, particularly soluble fiber, has repeatedly been shown to decrease postprandial glucose and insulin concentrations both in persons with diabetes and in those without (36). In addition, several cross-sectional epidemiologic studies reported inverse associations of serum insulin with fiber intake (3034).

In the present study, women in the highest quintile of dietary fiber intake had a 22% lower risk of developing diabetes than did women in the lowest quintile. These data corroborate a report from the Nurses'' Health Study reported that of the associations of diabetes with different sources of dietary fiber, only the inverse association between cereal fiber and diabetes remained statistically significant after multivariate adjustment (11). In the Health Professionals'' Health Study twice reported no association between intake of total carbohydrate and risk of diabetes (11, 12). Similarly, a study of 1462 Swedish women found no significant differences between intakes of carbohydrates in those who developed diabetes and those who did not over 12 y of follow-up (13). Overall, these findings argue against an independent effect of total carbohydrate intake in the etiology of diabetes.

Errors in the measurement of dietary intake, diabetes incidences, and the covariates in this study may have limited our ability to obtain accurate RR estimates. The food-frequency questionnaire was completed only once by study participants and no effort was made to examine potential dietary changes over the course of follow-up. Also, the baseline dietary survey was assumed to represent the participants''s effect on body weight.

We the 1 last update 27 May 2020 thank Ching-Ping Hong for computer programming assistance.We thank Ching-Ping Hong for computer programming assistance.

REFERENCES

1

Manson
JE
,
Spelsberg
A
.
Primary prevention of non-insulin-dependent diabetes mellitus
.
Am J Prev Med
1994
;
10
:
172
84
.

2

American the 1 last update 27 May 2020 Dietetic Association
.
American Dietetic Association
.
Nutrition recommendations and principles for people with diabetes mellitus
.
Diabetes Care
1994
;
94
:
504
6
.

3

Swinburn
BA
,
Boyce
VL
,
Bergman
RN
,
Howard
BV
,
Bogardus
C
.
Deterioration in carbohydrate metabolism and lipoprotein changes induced by modern, high fat diet in Pima Indians and caucasians
.
J Clin Endocrinol Metab
1991
;
73
:
156
65
.

4

Garg
A
,
Bantle
JP
,
Henry
RR
, et al. 
Effects of varying carbohydrate content of diet in patients with non-insulin-dependent diabetes mellitus
.
JAMA
1994
;
271
:
1421
8
.

5

Parillo
M
Parillo
M
,
Rivellese
AA
,
Ciardullo
AV
,
Giacco
A
,
Genovese
S
,
Riccardi
G
.
A high-monounsaturated fat/low carbohydrate diet improved peripheral insulin sensitivity in non-insulin-dependent diabetic patients
.
Metabolism
1992
;
41
:
1373
8
.

6

Borkman
M
,
Campbell
LV
,
Chisholm
DJ
, et al. 
Comparison of effects on insulin sensitivity of high carbohydrate and high fat diets in normal subjects
.
J Clin Endocrinol Metab
1991
;
72
:
432
7
.

Google Scholar

the 1 last update 27 May 2020

WorldCat

 
7

Kawate
R
,
Yamakido
M
,
Nishimoto
Y
, et al. 
Diabetes mellitus and its vascular complications in Japanese migrants on the island of Hawaii
.
Diabetes Care
1979
;
2
:
161
70
.

8

Tsunehara
CH
,
Leonetti
DL
,
Fujimoto
WY
.
Diet of second-generation Japanese-American men with and without non-insulin-dependent diabetes
.
Am J Clin Nutr
1990
;
52
:
731
8
.

Google Scholar

reverses diabetes type 2 with diet (👍 video) | reverses diabetes type 2 danger zonehow to reverses diabetes type 2 for WorldCat

 
reverses diabetes type 2 bedtime snacks (🔥 and urine) | reverses diabetes type 2 obesityhow to reverses diabetes type 2 for the 1 last update 27 May 2020 99

Marshall
JA
,
Hamman
RF
,
Baxter
J
.
Marshall
JA
,
Hamman
RF
,
Baxter
J
.
High-fat, low-carbohydrate diet and the etiology of non-insulin-dependent diabetes mellitus: The San Luis Valley Diabetes Study
.
Am J Epidemiol
1991
;
134
:
590
603
.

Google Scholar

reverses diabetes type 2 vaccine (⭐️ untreated) | reverses diabetes type 2 mellitus icd 10how to reverses diabetes type 2 for WorldCat

 
the 1 last update 27 May 2020 1010

reverses diabetes type 2 vaccine (⭐️ beta cells) | reverses diabetes type 2 childrenhow to reverses diabetes type 2 for

Colditz
GA
,
Manson
JE
,
Stampfer
MJ
,
Rosner
B
,
Willett
WC
,
Speizer
FE
.
Diet and risk of clinical diabetes in women
.
Am J Clin Nutr
1992
;
55
:
1018
23
.

reverses diabetes type 2 ketones (👍 blood sugar levels) | reverses diabetes type 2 by racehow to reverses diabetes type 2 for Google Scholar

WorldCat

 
11

reverses diabetes type 2 normal range chart (⭐️ cause high blood pressure) | reverses diabetes type 2 yo mamahow to reverses diabetes type 2 for

Salmerón
J
,
Manson
JE
,
Stampfer
MJ
, et al. 
Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women
.
JAMA
1997
;
277
:
472
7
.

for 1 last update 27 May 2020 1212

Salmerón
J
, reverses diabetes type 2 values (👍 too much insulin) | reverses diabetes type 2 untreatedhow to reverses diabetes type 2 for
Ascherio
A
,
Rimm
EB
, et al. 
Dietary fiber, glycemic load and risk of NIDDM in men
.
Diabetes Care
1997
;
20
:
545
50
.

Google Scholar

reverses diabetes type 2 quick fix (🔥 menu diet) | reverses diabetes type 2 zero to finalshow to reverses diabetes type 2 for WorldCat

 
reverses diabetes type 2 symptoms nhs (🔥 levels) | reverses diabetes type 2 curehow to reverses diabetes type 2 for 13

Lundgren
H
,
Bengtsson
C
Bengtsson
C
,
Blohmé
G
, et al. 
Dietary habits and incidence of noninsulin-dependent diabetes mellitus in a population study of women in Gothenburg, Sweden
.
Am J Clin Nutr
1989
;
49
:
708
12
.

14

Vinik
AJ
,
Jenkins
DJA
.
Dietary fiber in management of diabetes
.
Diabetes Care
1988
;
11
:
160
73
.

for 1 last update 27 May 2020 1515

Anderson
JW
,
Akanji
AO
.
Dietary fiber—an overview
.
Diabetes Care
1991
;
14
:
1126
31
.

reverses diabetes type 2 management (☑ blood pressure) | reverses diabetes type 2 mellitus with hyperglycemiahow to reverses diabetes type 2 for Google Scholar

WorldCat

 
16

reverses diabetes type 2 etiology (🔴 natural) | reverses diabetes type 2 josh axehow to reverses diabetes type 2 for

Marshall
JA
Marshall
JA
,
Weiss
NS
,
Hamman
RF
.
The role of dietary fiber in the etiology of non-insulin-dependent diabetes mellitus: The San Luis Valley Diabetes Study
.
Ann Epidemiol
1993
;
3
:
18
26
.

reverses diabetes type 2 and hypothyroidism (🔥 blood sugar) | reverses diabetes type 2 treatment without medicationhow to reverses diabetes type 2 for 17

reverses diabetes type 2 glucose (☑ brochure) | reverses diabetes type 2 breakfast menuhow to reverses diabetes type 2 for

Kao
WHL
,
Folsom
AR
,
Nieto
FJ
,
Mo
J-P
,
Watson
RL
,
Brancati
FL
.
Serum and dietary magnesium and the risk of type 2 diabetes mellitus: The Atherosclerosis Risk in Communities (ARIC) Study
.
Arch Intern Med
1999
;
159
:
2151
9
.

reverses diabetes type 2 blood sugar after eating (🔥 level) | reverses diabetes type 2 killerhow to reverses diabetes type 2 for Google Scholar

reverses diabetes type 2 fruits (👍 abbreviation) | reverses diabetes type 2 yeast infectionhow to reverses diabetes type 2 for

reverses diabetes type 2 fasting blood sugar goal (⭐️ youtube) | reverses diabetes type 2 Treatmentshow to reverses diabetes type 2 for WorldCatWorldCat

 
18

Wolever
TMS
Wolever
TMS
.
The glycemic index
.
World Rev Nutr Diet
1990
;
62
:
120
85
.

19

Jenkins
EJA
,
Wesson
V
Wesson
V
,
Wolever
TM
, et al. 
Wholemeal versus wholegrain breads: proportion of whole or cracked grain and the glycaemic response
.
Br Med J
1988
;
297
:
958
60
.

the 1 last update 27 May 2020 2020

reverses diabetes type 2 home remedie (🔥 cause high blood pressure) | reverses diabetes type 2 lifestylehow to reverses diabetes type 2 for

Folsom
AR
,
Prineas
RJ
Prineas
RJ
,
Kaye
SA
, et al. 
Body fat distribution and self-reported prevalence of hypertension, heart disease, and other heart disease in older women
.
Int J Epidemiol
1989
;
18
:
361
7
.

21

reverses diabetes type 2 natural dressings (🔥 link) | reverses diabetes type 2 symptoms menhow to reverses diabetes type 2 for

Kushi
LH
,
Kaye
SA
,
Folsom
AR
, et al. 
Kushi
LH
,
Kaye
SA
,
Folsom
AR
, et al. 
Accuracy and reliability of self-measurement of body girths
.
Am J Epidemiol
1988
;
128
:
740
8
.

reverses diabetes type 2 vinegar (👍 info) | reverses diabetes type 2 baconhow to reverses diabetes type 2 for 22

Jacobs
DR
Jr,
Meyer
KA
,
Kushi
LH
, reverses diabetes type 2 untreated (🔥 lab tests) | reverses diabetes type 2 fruits to eathow to reverses diabetes type 2 for
Folsom
AR
.
Whole-grain intake may reduce risk of ischemic heart disease death in postmenopausal women: the Iowa Women's Health Study
.
Am J Clin Nutr
1998
;
68
:
248
57
.

Google Scholar

reverses diabetes type 2 song (☑ urine test) | reverses diabetes type 2 termhow to reverses diabetes type 2 for

WorldCat

 
23

Brody
T
.
Nutritional biochemistry.
San Diego
:
Academic Press
,
1994
.

reverses diabetes type 2 prevention (🔥 jardiance) | reverses diabetes type 2 exercise planhow to reverses diabetes type 2 for 24

Willett
WC
, reverses diabetes type 2 treatment without medication (👍 list) | reverses diabetes type 2 symptomshow to reverses diabetes type 2 for
Sampson
L
,
Browne
ML
Browne
ML
, et al. 
The use of a self-administered questionnaire to assess diet four years in the past
.
Am J Epidemiol
1988
;
127
:
188
99
.

25

Munger
RG
Munger
RG
,
Folsom
AR
,
Kushi
LH
, et al. 
Dietary assessment of older Iowa women with a food frequency questionnaire: nutrient intake, reproducibility, and comparison with 24-hour dietary recall interviews
.
Am J Epidemiol
1992
;
136
:
192
200
.

26

Kaye
SA
, reverses diabetes type 2 with fasting (👍 hypoglycemia) | reverses diabetes type 2 mellitus nature reviews disease primershow to reverses diabetes type 2 for
Folsom
AR
,
Sprafka
JM
, et al. 
Increased incidence of diabetes mellitus in relation to abdominal adiposity in older women
.
J Clin Epidemiol
1991
;
44
:
329
34
.

Google Scholar

for 1 last update 27 May 2020

reverses diabetes type 2 life expectancy (🔥 kidney pain) | reverses diabetes type 2 urine testhow to reverses diabetes type 2 for WorldCat

 
reverses diabetes type 2 blood test (☑ glut4) | reverses diabetes type 2 genehow to reverses diabetes type 2 for 27

Willett
WC
,
Stampfer
MJ
Stampfer
MJ
.
Total energy intake: implications for epidemiologic analysis
.
Am J Epidemiol
1986
;
124
:
17
27
.

Google Scholar

the 1 last update 27 May 2020

WorldCat

 
reverses diabetes type 2 treatment home remedies (☑ glucose levels) | reverses diabetes type 2 is characterized byhow to reverses diabetes type 2 for 28

reverses diabetes type 2 youtube (👍 warning signs) | reverses diabetes type 2 treatments lexingtonhow to reverses diabetes type 2 for

SAS Institute, Inc.
SAS release 6.9.
Cary, NC
:
SAS Institute, Inc
,
1997
.

reverses diabetes type 2 questions for dr (🔥 permanently) | reverses diabetes type 2 symptoms mayo clinichow to reverses diabetes type 2 for Google Preview

reverses diabetes type 2 dinner (☑ treatment nhs) | reverses diabetes type 2 definitionhow to reverses diabetes type 2 for WorldCat

 
reverses diabetes type 2 untreated (🔥 vegetarian diet) | reverses diabetes type 2 common complicationshow to reverses diabetes type 2 for 29

Anderson
JW
,
Chen
WJL
.
Plant fiber: carbohydrate and lipid metabolism
.
Am J Clin Nutr
1979
;
32
:
346
63
.

Google ScholarGoogle Scholar

reverses diabetes type 2 new zealand (⭐️ exercise) | reverses diabetes type 2 obesehow to reverses diabetes type 2 for WorldCat

 
for 1 last update 27 May 2020 3030

Vitelli
LL
, reverses diabetes type 2 low blood sugar (⭐️ pathogenesis) | reverses diabetes type 2 treatshow to reverses diabetes type 2 for
Folsom
AR
,
Shahar
E
, et al. 
Association of dietary composition with fasting serum insulin level: The ARIC Study
.
Nutr Metab Cardiovasc Dis
1996
;
6
:
194
202
.

reverses diabetes type 2 with diet (⭐️ would be considered) | reverses diabetes type 2 lab valueshow to reverses diabetes type 2 for OpenURL Placeholder Text

WorldCat

 
31

Lovejoy
J
, reverses diabetes type 2 insulin pump (🔴 and covid 19) | reverses diabetes type 2 ketohow to reverses diabetes type 2 for
DiGirolamo
M
.
Habitual dietary intake and insulin sensitivity in lean and obese adults
.
Am J Clin Nutr
1992
;
55
:
1174
9
.

32

Feskens
EJM
, reverses diabetes type 2 home remedies (👍 in youth) | reverses diabetes type 2 pregnancyhow to reverses diabetes type 2 for
Loeber
JG
,
Kromhout
D
.
Diet and physical activity as determinants of hyperinsulinemia: The Zutphen Elderly Study
.
Am J Epidemiol
1994
;
140
:
350
60
.

33

Manolio
TA
,
Savage
PJ
,
Burke
GL
, et al. 
Correlates of fasting insulin levels in young adults: The CARDIA Study
.
J Clin Epidemiol
1991
;
44
:
571
8
.

reverses diabetes type 2 causes (🔥 fruits to eat) | reverses diabetes type 2 joint painhow to reverses diabetes type 2 for Google Scholar

WorldCat

 
34

Marshall
JA
, reverses diabetes type 2 mellitus without complication (☑ experience) | reverses diabetes type 2 natural dressingshow to reverses diabetes type 2 for
Bessesen
DH
Bessesen
DH
, reverses diabetes type 2 life expectancy (👍 options) | reverses diabetes type 2 yogurthow to reverses diabetes type 2 for
Hamman
RF
.
High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: The San Luis Valley Diabetes Study
.
Diabetologia
1997
;
40
:
430
8
.

Google Scholar

reverses diabetes type 2 food choices (☑ foot pain) | reverses diabetes type 2 with mellitushow to reverses diabetes type 2 for

WorldCat

 
35

Feskens
EJM
,
Virtanen
SM
, reverses diabetes type 2 overview (👍 juvenile) | reverses diabetes type 2 warning signshow to reverses diabetes type 2 for
Räsänen
L
, et al. 
Dietary factors determining diabetes and impaired glucose tolerance: a 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study
.
Diabetes Care
1995
;
18
:
1104
12
.

Google Scholar

reverses diabetes type 2 uncontrolled icd 10 (☑ and urine) | reverses diabetes type 2 mayo clinichow to reverses diabetes type 2 for WorldCat

 
36

Anderson
JW
.
Fiber and health: an overview
.
Am J Gastroenterol
1986
;
81
:
892
7
.

37

Yajnik
CS
,
Smith
RF
,
Hockaday
TDR
,
Ward
NI
.
Fasting plasma magnesium concentrations and glucose disposal in diabetes
.
Br Med J
1984
;
288
:
1032
4
.

reverses diabetes type 2 reasons (☑ breakfast menu) | reverses diabetes type 2 reversalhow to reverses diabetes type 2 for Google Scholar

WorldCat

 
38

Paolisso
G
,
Sgambato
S
,
Gambardella
A
, et al. 
Daily magnesium supplements improve glucose handling in elderly subjects
.
Am J the 1 last update 27 May 2020 Clin Nutr
1992
;
55
:
1161
7
.
Paolisso
G
,
Sgambato
S
,
Gambardella
A
, et al. 
Daily magnesium supplements improve glucose handling in elderly subjects
.
Am J Clin Nutr
1992
;
55
:
1161
7
.

Google ScholarGoogle Scholar

reverses diabetes type 2 vegan (🔴 joint pain) | reverses diabetes type 2 glucose levelshow to reverses diabetes type 2 for

WorldCat

 
39

Slavin
J
,
Jacobs
D
,
Marquart
L
.
Whole-grain consumption and chronic disease: protective mechanisms
.
Nutr Cancer
1997
;
27
:
14
21
.
Slavin
J
,
Jacobs
D
,
Marquart
L
.
Whole-grain consumption and chronic disease: protective mechanisms
.
Nutr Cancer
1997
;
27
:
14
21
.

40

Pereira
MA
,
Jacobs
DR
,
Slattery
ML
, et al. 
The association of whole grain intake and fasting insulin in a biracial cohort of young adults: The CARDIA Study
.
CVD Prevention
1998
;
1
:
231
42
.

41

Bantle
JP
.
Clinical aspects of sucrose and fructose metabolism
.
Diabetes Care
1984
;
12
:
56
61
.

reverses diabetes type 2 breakfast menu (⭐️ video) | reverses diabetes type 2 food planhow to reverses diabetes type 2 for Google Scholar

WorldCat

 
42

Swanson
JE
,
Laine
DC
,
Thomas
W
,
Bantle
JP
.
Metabolic effects of dietary fructose in healthy subjects
.
Am J Clin Nutr
1992
;
55
:
851
6
.

43

Gerrits
PM
,
Tsalikian
E
.
Diabetes and fructose metabolism
.
Am J Clin Nutr
1993
;
58
(
suppl
):
796S
9S
.
Gerrits
PM
,
Tsalikian
E
.
Diabetes and fructose metabolism
.
Am J Clin Nutr
1993
;
58
(
suppl
):
796S
9S
.

Google Scholar

reverses diabetes type 2 vegan (👍 pathophys) | reverses diabetes type 2 nursing diagnosishow to reverses diabetes type 2 for WorldCat

 
44

Bantle
JP
,
Swanson
JE
,
Thomas
W
, et al. 
Metabolic effects of dietary fructose in diabetic subjects
.
Diabetes Care
1992
;
15
:
1468
76
.
Bantle
JP
,
Swanson
JE
,
Thomas
W
, et al. 
Metabolic effects of dietary fructose in diabetic subjects
.
Diabetes Care
1992
;
15
:
1468
76
.

45

Beaton
GH
.
Approaches to analysis of dietary data: relationship between planned analyses and choice of methodology
.
Am J Clin Nutr
1994
;
59
(
suppl
):
253S
61S
.

reverses diabetes type 2 zero to finals (🔴 nature review) | reverses diabetes type 2 use insulinhow to reverses diabetes type 2 for Google Scholar

WorldCat

 
46

Tretli
S
,
Lund-Larsen
PG
,
Foss
OP
.
Reliability of questionnaire information on for 1 last update 27 May 2020 cardiovascular disease and diabetes: cardiovascular disease study in Finnmark county
.
J Epidemiol Community Health
1982
;
36
:
269
73
.
Tretli
S
,
Lund-Larsen
PG
,
Foss
OP
.
Reliability of questionnaire information on cardiovascular disease and diabetes: cardiovascular disease study in Finnmark county
.
J Epidemiol Community Health
1982
;
36
:
269
73
.

reverses diabetes type 2 in youth (🔥 diagnostic procedures) | reverses diabetes type 2 quoteshow to reverses diabetes type 2 for 47

reverses diabetes type 2 hyperglycemia (⭐️ biology) | reverses diabetes type 2 ricottahow to reverses diabetes type 2 for

Midthjell
K
,
Holmen
J
,
Bjørndal
A
, et al. 
Is questionnaire information valid in the study of a chronic disease such as diabetes? The Nord-Trøndelag Diabetes Study
.
J Epidemiol Community Health
1992
;
46
:
537
42
.

Google Scholar

for 1 last update 27 May 2020

WorldCat

 
48

The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus
.
Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus
.
Diabetes Care
1997
;
20
:
1183
97
.

FOOTNOTES

2

""article-metadata-standalone-panel clearfix""copyright copyright-statement""UserHasAccess""True""widget widget-RelatedTags widget-instance-OUP_Article_RelatedTags_Widget""related-topic-tags""related-topic-tag-label""related-topic-tag-list""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=magnesium""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=dietary fiber""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=diabetes mellitus""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=diabetes mellitus, type 2""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=carbohydrates""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=diet""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=cereals""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=food""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=glycemic index""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=older adult""https://academic.oup.com/ajcn/search-results?f_SemanticFilterTopics=whole grains""widget widget-SolrResourceMetadata widget-instance-OUP_Article_ResourceMetadata_Widget""article-metadata-panel solr-resource-metadata""article-metadata-tocSections""article-metadata-tocSections-title""/ajcn/search-results?f_TocHeadingTitle=Carbohydrate metabolism and diabetes""widget widget-EditorInformation widget-instance-OUP_Article_EditorInformation_Widget""widget widget-ArticleOpenScienceBadges widget-instance-OUP_Article_OpenScienceBadge_Widget""ContentTabFilteredView""downloadImagesppt js-download-images-ppt st-download-images-ppt""lnkDownloadAllImages""js-download-all-images-link""/DownloadFile/DownloadImage.aspx?image=&PPTtype=SlideSet&ar=4729131&xsltPath=~/UI/app/XSLT&siteId=6122""widget widget-ArticleDataRepositories widget-instance-Article_DryadLink""comments""widget widget-UserCommentBody widget-instance-UserCommentBody_Article""widget widget-UserComment widget-instance-OUP_UserComment_Article""Sidebar""page-column page-column--right""widget widget-AdBlock widget-instance-ArticlePageTopSidebar""adBlockMainBodyTop"" ""widget widget-dynamic""1""widget-dynamic-inner-wrap""widget widget-dynamic""11""widget-dynamic-inner-wrap""widget widget-ArticleLevelMetrics widget-instance-Article_RightRailB0Article_RightRail_ArticleLevelMetrics""artmet-wrapper horizontal-artmet""artmet-condensed-wrap clearfix""artmet-condensed-stats clearfix""artmet-item artmet-views""artmet-number""artmet-text""artmet-item artmet-citations""artmet-number""artmet-text""artmet-item artmet-altmetric""widget widget-AltmetricLink widget-instance-ArticleLevelMetrics_AltmetricLinkSummary""altmetricEmbedId""server""donut""false""10.1093/ajcn/71.4.921""artmet-modal-trigger-wrap clearfix""artmet-modal-trigger""4729131""icon-metrics""artmet-modal""MetricsModal""artmet-modal-contents""artmet-close-modal""widget widget-Alerts widget-instance-Article_RightRailB0Article_RightRail_Alerts""alertsWidget""userAlert alertType-1""link""Article activity alert""False""1""userAlert alertType-3""link""Advance article alerts""False""3""userAlert alertType-5""link""New issue alert""False""5""userAlert alertType-MarketingLink""link""Receive exclusive offers and updates from Oxford Academic""False""/my-account/communication-preferences""userAlertSignUpModal reveal-modal small""userAlertSignUp""alert-signup-modal-close""screenreader-text""button""alert-signup-modal-close""close-reveal-modal""javascript:;""icon-general-close""widget widget-ArticleLinks widget-instance-Article_RightRailB0Article_RightRail_ArticleLinks""widget widget-TrendMD widget-instance-Article_RightRailB0trendmd""trendmd-suggestions""widget widget-RelatedContent widget-instance-Article_RightRailB0Article_RightRail_RelatedContent""article-widget-head""widget-related-content""article-title""/ajcn/article/69/4/647/4737353""article-title""/ajcn/article/55/4/823/4694328""article-title""/ajcn/article/87/3/645/4633269""article-title""/ajcn/article/85/6/1495/4632982""widget widget-RelatedArticleIn widget-instance-Article_RightRailB0Article_RightRail_RelatedArticleIn""relatedArticleIn-title""relatedArticleIn-content""https://scholar.google.com/scholar?q=related:https%3a%2f%2facademic.oup.com%2fajcn%2farticle%2f71%2f4%2f921%2f4729131""widget widget-RelatedPubMed widget-instance-Article_RightRailB0Article_RightRail_RelatedPubMed""article-widget-head""widget-related-pubmed""inner-content-wrap""inner-content""article-title""http://www.ncbi.nlm.nih.gov/pubmed/32325358""article_ArticleTitle""_blank""citation""inner-content-wrap""inner-content""article-title""http://www.ncbi.nlm.nih.gov/pubmed/32325307""article_ArticleTitle""_blank""citation""inner-content-wrap""inner-content""article-title""http://www.ncbi.nlm.nih.gov/pubmed/32325125""article_ArticleTitle""_blank""citation""inner-content-wrap""inner-content""article-title""http://www.ncbi.nlm.nih.gov/pubmed/32325043""article_ArticleTitle""_blank""citation""article-widget-foot""view-more""http://www.ncbi.nlm.nih.gov/pubmed?term=((dietary+AND+fiber)+OR+(diabetes+AND+mellitus)+OR+(diabetes+AND+mellitus,+AND+non-insulin-dependent)+OR+(carbohydrates))""Config_ViewMoreLink""view-more-link""_blank""widget widget-ArticleCitedBy widget-instance-Article_RightRailB0Article_RightRail_ArticleCitedBy""rail-widget_wrap vt-articles-cited-by""article-cited-title""widget-links_wrap""article-cited-link-wrap google-scholar-url""http://scholar.google.com/scholar?q=link:https%3A%2F%2Facademic.oup.com%2Fajcn%2Farticle%2F71%2F4%2F921%2F4729131""_blank""article-cited-link-wrap crossref-citedby""widget widget-ArticleListNewAndPopular widget-instance-Article_RightRailB0Article_RightRail_ArticleNewPopularCombined""articleListNewAndPopularCombinedView""javascript:;""articleListNewAndPopular-mode active""MostRecent""javascript:;""articleListNewAndPopular-mode""MostRead""javascript:;""articleListNewAndPopular-mode""MostCited""articleListNewPopContent articleListNewAndPopular-ContentView-MostRecent hasContent""newPopularList-Article_RightRailB0Article_RightRail_ArticleNewPopularCombined""fb""widget-layout widget-layout--vert""widget-columns widget-col-1""col""widget-dynamic-entry""/ajcn/advance-article/doi/10.1093/ajcn/nqaa068/5835210?searchresult=1""widget-dynamic-journal-title""widget-dynamic-journal-image-synopsis""widget-dynamic-journal-synopsis""widget-dynamic-entry""/ajcn/advance-article/doi/10.1093/ajcn/nqaa086/5835207?searchresult=1""widget-dynamic-journal-title""widget-dynamic-journal-image-synopsis""widget-dynamic-journal-synopsis""widget-dynamic-entry""/ajcn/advance-article/doi/10.1093/ajcn/nqaa090/5835203?searchresult=1""widget-dynamic-journal-title""widget-dynamic-journal-image-synopsis""widget-dynamic-journal-synopsis""widget-dynamic-entry""/ajcn/advance-article/doi/10.1093/ajcn/nqaa080/5830774?searchresult=1""widget-dynamic-journal-title""widget-dynamic-journal-image-synopsis""widget-dynamic-journal-synopsis""widget-dynamic-entry""/ajcn/advance-article/doi/10.1093/ajcn/nqaa063/5830773?searchresult=1""widget-dynamic-journal-title""widget-dynamic-journal-image-synopsis""widget-dynamic-journal-synopsis""articleListNewPopContent articleListNewAndPopular-ContentView-MostRead hide""articleListNewPopContent articleListNewAndPopular-ContentView-MostCited hide""widget widget-AdBlock widget-instance-ArticlePageTopMainBodyBottom""adBlockMainBodyBottom"" ""hfArticleTitle""hfArticleTitle""hidden""Carbohydrates, dietary fiber, and incident type 2 diabetes in older women | The American Journal of Clinical Nutrition | Oxford Academic""hfLeftNavStickyOffset""hfLeftNavStickyOffset""hidden""29""hfAreOpFeaturesEnabled""hfAreOpFeaturesEnabled""hidden""False""mobile-mask""footer_wrap vt-site-footer""widget widget-SitePageFooter widget-instance-SitePageFooter""ad-banner ad-banner-footer""widget widget-AdBlock widget-instance-FooterAd""adBlockFooter"" ""journal-footer journal-bg""center-inner-row""journal-footer-menu""link-1""https://academic.oup.com/ajcn/pages/About""link-2""https://academic.oup.com/ajcn/pages/Editorial_Board""link-3""https://academic.oup.com/ajcn/pages/General_Instructions""link-4""https://www.facebook.com/AmerSocNutr""link-5""https://twitter.com/nutritionorg""link-1""https://twitter.com/jnutritionorg""link-2""http://www.oxfordjournals.org/en/library-recommendation-form.html""link-3""http://www.oupmediainfo.com/#!/""link-4""http://medicine-and-health-careernetwork.oxfordjournals.org""journal-footer-affiliations""journal-footer-colophon""oup-footer""center-inner-row""widget widget-SelfServeContent widget-instance-OupUmbrellaFooterSelfServe""oup-footer-row journal-links""global-footer selfservelinks""/journals/pages/about_us""/journals/pages/contact_us""http://global.oup.com/jobs""/journals/pages/help""/journals/pages/access_purchase""/journals/pages/access_purchase/rights_and_permissions""/journals/pages/open_access""global-footer selfservelinks""global-footer-customer services""title footerheader""/my-account/communication-preferences""http://blog.oup.com/""http://twitter.com/oupacademic""https://www.facebook.com/OUPAcademic""http://www.youtube.com/playlist?list=PL3MAPgqN8JWioLLTkU4mlFM4-SNt-f1Xs""http://oupacademic.tumblr.com/""global-footer selfservelinks""/journals/pages/authors""/journals/pages/librarians""/journals/pages/societies""https://academic.oup.com/journals/pages/sponsorship_and_advertising""/journals/pages/press""/journals/pages/agents""global-footer selfservelinks""http://global.oup.com/academic""http://www.oxforddictionaries.com/""https://www.epigeum.com/""http://global.oup.com/""http://www.ox.ac.uk/""OUP-mission""journal-footer-logo""//oup.silverchair-cdn.com/UI/app/svg/umbrella/oup-logo.svg""Oxford University Press""150""42""oup-footer-row""oup-footer-row-links""https://global.oup.com/cookiepolicy/""https://global.oup.com/privacy""/journals/pages/about_us/legal/notices""/journals/pages/sitemap""/journals/pages/about_us/legal/accessibility""https://get.adobe.com/reader/""text/css""ss-ui-only""revealModal""reveal-modal""revealContent""close-reveal-modal""javascript:;""icon-general-close""screenreader-text""NeedSubscription""reveal-modal small""subscription-needed""/sign-in""/my-account/register?siteId=6122&returnUrl=%2fajcn%2farticle%2f71%2f4%2f921%2f4729131""close-reveal-modal""javascript:;""icon-general-close""screenreader-text""noAccessReveal""reveal-modal tiny""hide-for-article-page""articleLinkToPurchase""issue-purchase-modal""close-reveal-modal""javascript:;""icon-general-close""screenreader-text""//ouptag.scholarlyiq.com/ntpagetag.gif?js=0""1""1""0""0""0""Scholarly IQ""ad-banner js-ad-riser ad-banner-riser""widget widget-AdBlock widget-instance-RiserAd""hidden""hfAdBlockInfo""adBlockRiser""""""""""True""1" />